
A Social Description Revolution –
Describing Web APIs’ Social Parameters with RESTdesc

Ruben Verborgh
Ghent University – IBBT, ELIS – Multimedia Lab

Gaston Crommenlaan 8 bus 201,
B-9050 Ledeberg-Ghent, Belgium

ruben.verborgh@ugent.be

Thomas Steiner
Universitat Politècnica de Catalunya

Department LSI
08034 Barcelona, Spain

tsteiner@lsi.upc.edu

Joaquim Gabarro
Universitat Politècnica de Catalunya

Department LSI
08034 Barcelona, Spain

gabarro@lsi.upc.edu

Erik Mannens and Rik Van de Walle
Ghent University – IBBT, ELIS – Multimedia Lab

Gaston Crommenlaan 8 bus 201,
B-9050 Ledeberg-Ghent, Belgium

{erik.mannens,rik.vandewalle}@ugent.be

Abstract

Functionality makes APIs unique and therefore helps
humans and machines decide what service they need.
However, if two APIs offer similar functionality, qual-
ity attributes such as performance and ease-of-use might
become a decisive factor. Several of these quality at-
tributes are inherently subjective, and hence exist within
a social context. These social parameters should be
taken into account when creating personalized mashups
and service compositions. The Web API description
format RESTdesc already captures functionality in an
elegant way, so in this paper we will demonstrate how
it can be extended to include social parameters. We in-
dicate the role these parameters can play in generating
functional compositions that fulfill specified quality at-
tributes. Finally, we show how descriptions can be per-
sonalized by exploring a user’s social graph. This ulti-
mately leads to a more focused, on-demand use of Web
APIs, driven by functionality and social parameters.

1 Introduction and Paper Structure
Usually, descriptions of a Web API or service only cover
certain aspects. They emphasize its technical aspects, such
as parameters, and sometimes formally express its function-
ality. But how to decide between different API providers
that offer similar services? How to express variations in ob-
jective (speed, accuracy, reliability. . .) and subjective (user-
friendliness, versatility, popularity. . .) quality parameters?
While one API provider may offer more features, another
can be your provider of choice, because people in your social
graph give it a high quality rating.

In practice, these objective and subjective parameters
carry an importance equal to those in traditional API de-
scriptions. This is where social computing opens up new
perspectives for Web APIs: while providers supply the tech-
nical description for an API, users’ social activities can pro-
vide the measurements for various quality parameters, from
here on referred to as social parameters. Some of them,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as speed, can be gathered automatically. Others, such
as accuracy and the subjective parameters, can be supplied
by users in a variety of ways (tagging, voting, collaborat-
ing. . .). This could even happen independently from the API
provider, e.g., on a third party API directory such as Pro-
grammable Web (DuVander 2011). The only question that
remains is: how to combine those social parameters with the
API description, so that they can be incorporated into the
creation process of API mashups and compositions?

The API description paradigm RESTdesc (Verborgh et al.
2012), based on Linked Data principles (Bizer, Heath, and
Berners-Lee 2009), provides advanced capabilities for cap-
turing the functionality of APIs in a way that enables au-
tomated mashups and compositions. Today’s social revo-
lution on the Web, however, shows that the power of APIs
is not solely defined by their functionality. Therefore, in
this paper, we explain how RESTdesc can incorporate ex-
ternal social parameters to differentiate between potentially
competing APIs with similar capabilities. This allows for
mashups and compositions that reckon with social qual-
ity parameters, both objective and subjective, creating on-
demand solutions that match more than only the functional
needs of a specific context.

We start by explaining the basic principles and strengths
of RESTdesc in Section 2, followed by the incorporation
of social parameters in descriptions in Section 3. Then, we
personalize these social parameters in Section 4 by collect-
ing results from users’ social graphs. Section 5 provides
an overview of related work, and we conclude this paper
in Section 6.

2 RESTdesc: Functional Descriptions
2.1 Focus on Functionality
If we go back to the origins of Web service descriptions, we
see that the initial focus was mostly on their technical as-
pects, such as parameter types and possible exceptions. The
central idea of RESTdesc, the description paradigm we pro-
posed previously (2012), was to capture the main differenti-
ating characteristic of Web services, namely functionality.

AAAI Technical Report SS-12-04
Intelligent Web Services Meet Social Computing

81

@prefix ex: <http://example.org/photos#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix http: <http://www.w3.org/2011/http#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
{
?photo ex:faces ?photoFaces. 1

}
=>
{
_:request http:methodName "GET"; 2

http:requestURI ?photoFaces;
http:resp ?faces.

_:region owl:oneOf ?faces; 3
ex:regionOf ?photo;
foaf:depicts [a foaf:Person].

}.

Listing 1: RESTdesc describes the functionality of APIs
using links, illustrated here with a face detection example.

RESTdesc is based on Semantic Web technologies and
emphasizes resource-orientation, hypermedia links, and el-
egance. It mainly targets RESTful applications (Fielding
and Taylor 2002), which is why we employ the term “API”
rather than “service”. Descriptions are written in Notation3
or N3 (Berners-Lee and Connolly 2009), a small superset
of RDF that adds support for variables and quantification.
The example in Listing 1 uses a face detection example
to show the common elements of RESTdesc descriptions.
The displayed description is to be interpreted as follows:
IF you have a photograph with a faces hyperlink 1
THEN you can make an HTTP GET request to that link 2
to receive regions in this photograph that depict a person. 3
As you can see, this description connects the photograph in
a functional way to a list of persons.

Furthermore, the following properties give RESTdesc
descriptions a substantial advantage in the Web API and
Semantic Web context:
Hypermedia-driven RESTdesc strongly relies on hyper-

media links and therefore enables efficient description of
REST APIs, which, according to Fielding (2008), should
respect the hypermedia constraint by driving their actions
with hypermedia controls such as links and forms. In fact,
the purpose of the description in Listing 1 is to explain
what following a hyperlink of type ex:faces means. If
an automated agent finds such a link on a photo page, it
can expect that the link target will be a list of face regions.

Domain-centered Contrary to many other previous de-
scription formats, such as OWL-S (Martin et al. 2007) and
WSMO (Feier et al. 2005), RESTdesc puts the applica-
tion domain into the center of the description. In fact, one
of the key points of REST is that the notion of “service”
disappears, because the application is modeled in terms
of resources instead of endpoints. The domain portion of
Listing 1 consists of items 1 and 3 , which are glued
together by item 2 .

Vocabulary reuse As a consequence, RESTdesc does not
force description authors to use a certain vocabulary, but
rather encourages to use vocabularies that best fit the ap-

plication domain. This will particularly be an advantage
when adding social parameters to descriptions in Sec-
tion 3, since we will not be limited to a specific vocab-
ulary. In Listing 1, we see the employed vocabularies are
either commonly used (owl), directly related to the appli-
cation domain (foaf and ex), or relevant to the employed
protocol (http). A RESTdesc-specific vocabulary is not
necessary nor desired.

These characteristics make RESTdesc descriptions an excel-
lent candidate to bridge between REST APIs and the Seman-
tic Web and Linked Data worlds.

2.2 Matching and Composition
A feature of RESTdesc especially relevant to social pa-
rameters is that is has been specifically designed to allow
for straightforward API matching and composition. The
if-then structure of the N3 rules in which RESTdesc is ex-
pressed also carries an operational semantics (Berners-Lee
et al. 2008). For matching, this means that we can check if
two services can connect by verifying that the consequent
of one service entails the antecedent of another in a given
context. This process is automated with reasoners such as
EYE (De Roo 1999–2012). For composing, the procedure
is similar: the current situation (precondition) and desired
situation (goal) are fed to a reasoner, combined with a set
of API descriptions. The reasoner then arranges the descrip-
tions and chains them together as a path from precondition
to goal (Verborgh et al. 2011b).

With regard to social parameters, this matching and com-
position capability is vital. The static description of social
parameters is an interesting start, but what we really want
is a method that incorporates those parameters when find-
ing a solution. For instance, users may want a composition
chain that organizes photographs based on depicted people,
with a satisfaction rate of at least 90%. Scenarios like this
one will be explored in Section 3 below. Further aspects of
RESTdesc are described in previous works (Verborgh et al.
2011a; 2012), as well as on the website http://restdesc.org/.

3 Social Parameters in Descriptions
3.1 Significance and Role of Social Parameters
By capturing functionality, RESTdesc has a different focus
than most previous description methods, several of which
are summarized by Harth (2012). However, functionality
by itself is still insufficient to obtain a complete picture of
any API. For that reason, the measurement of social param-
eters is important, because it reveals several quality aspects
that a functional description cannot convey. Listing 1 tells
us that the described API performs face detection—but how
fast does it work, how correct are its results, and is it easy to
use? The answers to those questions are captured by quality
parameters, gathered in a social context.

Figure 1 shows several of those parameters, some of
which can be automatically computed, and some of which
can only determined by humans. Depending on the appli-
cation, some of these parameters can fit in one category or
the other. The key message of this figure, however, is that

82

speed

computable non-computable

availability

simplicitycorrectness

completeness usefulness

Figure 1: The calculation of several relevant quality metrics
will always require human participation.

the relevant measurement of any parameter, whether com-
putable or not, requires human interactions. For instance, we
do not want to know the speed of a hypothetical API query,
but the speed of actual queries performed by users. Simi-
larly, 99.9% availability is meaningless if most users want
to use the system the other 0.1% of time. Such benchmark
disparities for Web applications have been documented be-
fore (Ratanaworabhan, Livshits, and Zorn 2010) and make
the difference between a server-centric and a user-centric
quality model. User-centeredness is, purely by definition,
always subjective, but quantity can provide at least a ten-
dency towards objectivity on very individually different as-
pects such as ease of use.

3.2 Measuring Social Parameters
Before we can add social parameters to descriptions, we
must first explore ways of measuring them. Programmable
Web (DuVander 2011) is an example of a portal where peo-
ple can comment on APIs and assign a rating on a 1–5 scale.
On other well-known mechanism is tagging, where user as-
sign words of their choice to a service. In general, there
are three different types of scales in use to measure quality
parameters:

Ordinal scale Tags can be seen as an ordinal scale, albeit
with a possibly infinite domain that included overlaps.
For example, users may tag an API with one or more of
excellent, superb, average, and mediocre. Clearly, excel-
lent and superb, just like average and mediocre, must be
grouped together, as they can be considered synonyms.
Each quality attribute may have its own specific tags, such
as fast and slow for speed.

Subjective ratio scale People may rate an API using vari-
ous predefined quality attributes. Ratings can either be re-
lated to the entire API by itself (e.g., a ranking of 4 stars
in Programmable Web) or concern specific aspects of
a service (e.g., ease-of-use, performance). However, the
meaning of a certain rating is a personal judgement.

Objective ratio scale Most objective metrics, such as avail-
ability and average response time, are performed by auto-
mated measurements and calculations. Their results are
objective and verifiable.

In this paper, we will focus on values representable in one of
the latter two scales, because they can be calculated with.

@prefix ex: <http://example.org/photos#>.
@prefix q: <http://example.org/quality#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix http: <http://www.w3.org/2011/http#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
{

?photo ex:faces ?photoFaces.
}
=>
{

_:request http:methodName "GET";
http:requestURI ?photoFaces;
http:resp ?faces;
q:duration 1.3;
q:speed 0.9.

?photoFaces q:uptime 0.99;
q:availability 0.95.

?faces q:correctness 0.9;
q:precision 0.8;
q:recall 0.7.

_:region owl:oneOf ?faces;
ex:regionOf ?photo;
foaf:depicts [a foaf:Person].

}.

Listing 2: RESTdesc seemlessly interleaves quality proper-
ties with functional descriptions.

3.3 Adding Social Parameters to RESTdesc
Based on the RESTdesc characteristics outlined in Section 2,
we will now present an extensible way to incorporate social
parameters in RESTdesc descriptions. Since RESTdesc al-
ways adapts to the application domain, there is no technical
reason to choose a specific ontology or vocabulary to de-
scribe the quality of a Web API. This is an important benefit,
since we are not bound to a restricted set of social parame-
ters, but can use as many different vocabularies as demanded
by the use case. To keep the example generic, we will use
a fictitious quality ontology q.

The central question is to which part of the description of
Listing 1 we can add quality parameters. Obviously, the an-
tecedent 1 of the if-then rule is not the right place, since it
only concerns the contextual precondition. The consequent
consists of the request 2 and response details 3 , both of
which will be targets for quality information. Indeed, if we
reflect upon the nature of the parameters, we see that some
of them are a function of the request (e.g., execution time),
some of the request’s resource (e.g., availability), and finally
some of the response (e.g., correctness). Therefore, they be-
long at that respective place in the description.

Listing 2 repeats the functional description of Listing 1,
complementing it with various quality parameters. We will
examine different types of quality parameters, based on their
role, in closer detail below.

Request parameters In the example, we want to describe
the expected amount of time it takes to execute a re-
quest. An objective measurement would be the aver-
age request time in seconds, which is supplied by the
duration parameter. However, this value might not

83

help users decide—does 1.3 seconds mean the API is fast
or not? Therefore, a social parameter speed explains user
perception of temporal performance on a 0–1 scale, the
0.9 value indicating that 1.3 seconds is considered fast.

Resource parameters The availability measurement has
been attached to the resource, because it makes no sense
to talk about the availability of requests: a given request
is either executed or not, i.e., availability is a probability
not for a specific request but for the whole of all requests.
Note the difference between the objective uptime, indi-
cating the percent of time the resource is in normal op-
eration, and availability, the percentage of demands
that are correctly answered. The later is a user-centered
metric, as discussed in Subsection 3.1.

Response parameters Finally, the API’s response is scored
on its quality. The classical precision and recall pa-
rameters are evaluated, here by respectively counting the
number of correct face detections versus the total num-
ber of returned regions, and by counting the number of
undetected faces versus the total number of faces. These
scores can only be exact if rated by humans, due to cur-
rent visual algorithm limitations. Another quality param-
eter, correctness, indicates how closely the returned
regions fit the boundaries of the detected faces.

An important technical remark we should make here, is
that the possible difference between expected quality values
(e.g., a duration of 1.3 seconds) and actual values (e.g., the
execution took 2.4 seconds) is not a contradiction. After all,
the logical interpretation RESTdesc description rules is that
the satisfaction of the preconditions implies the existence of
some request and response with the given parameters (as op-
posed to all requests). Whether or not the actual request will
have quality attributes similar to those of that hypothetical
request is not stated, but only reasonably expected.

By virtue of the parameters above, the question whether
a certain Web API can satisfy a functional requirement and
certain quality constraints, based on a social context, can
now be answered with matching. Furthermore, these pa-
rameters can propagate into a composition to estimate their
value in chains of several API calls.

4 Personalized Descriptions
The previous section leaves an important question open:
how do the personal parameter values from one user reach
other users of the API? In fact, this also brings up trust is-
sues: how do you know whether an advertised quality rating
is truthful, and if it is, did all users that contributed to this rat-
ing have sufficient expertise to do so? For example, the API
ratings on Programmable Web seem trustworthy, since this
website serves as an independent information source. How-
ever, there is no guarantee that competing API providers of-
fering a similar service, if economical or other motives are
involved, cannot artificially influence ratings. And even if
there would be such a guarantee, the significance of an av-
erage rating value to an individual user remains unsure, be-
cause that user is unaware of the background of people that
rated the API.

previous users

API description

usersocial graph

social parameters description repository

functional

social

Figure 2: The repository combines functional descriptions
with social parameters from a user’s social graph.

In essence, this is a question of provenance data (Golbeck
and Hendler 2008), telling us what information comes from
what source. Based on this provenance data, the trust in
the information should be determined (Golbeck, Parsia, and
Hendler 2003). This solution thus starts from a large data
collection, out of which a selection of trusted information
for a user is distilled.

Our approach for personalized descriptions will work the
other way round. Based on a user’s social graph, we search
for people that the user estimates as sufficiently trustwor-
thy and experienced to give an opinion on a certain API,
with the obvious fallback option to use the data from peo-
ple outside of the user’s social graph if necessary. In the
past, we have suggested several description discovery meth-
ods for RESTdesc (Verborgh et al. 2012). They can either
be provider-based, when the API provider itself offers the
descriptions, or repository-based, when a third party offers
the descriptions of various APIs. We will discuss person-
alized descriptions with repository-based discovery mecha-
nisms here, since this is the most straightforward solution.

The idea is similar to websites such as Programmable
Web where people can rate and comment on a service, but
the difference is the locus of control. The driver are social
networks on which the user has an account, such as Face-
book (Joinson 2008) or Twitter (Huberman, Romero, and
Wu 2009). Each API is uniquely identified by its base URL,
and this identifier is used to group reactions together. When
users want to comment on an API, they can create key-value
annotations, likely using an assisting tool. The keys come
from a fixed set, for instance, from a quality ontology such
as the one featured in Section 3. The ratings can either be
stored in their social network, e.g., with the Open Graph Pro-
tocol (Zuckerberg and Taylor 2010) in the case of Facebook,
or along with the descriptions in repository, e.g., in the case
of Twitter, which doesn’t have a data store.

When a user then requests an API description, the repos-
itory will request access to the social graph of one or more
networks. Possibly, the user can also indicate which groups
within these graphs he or she deems authorized to assess
the quality of APIs. The repository then traverses the given
(part of) the social graph, looking for quality ratings for the
requested API. A weighted average, depending on the posi-
tion in the graph, then forms the definitive score. If no such
data is available in the social graph, or if the user does not
wish such personalization, then a global average can still be
used as an approximation.

84

Finally, the repository combines the static, functional ver-
sion of the description (such as Listing 1) with the retrieved
social parameters to obtain a personalized description (List-
ing 2), as can be seen in Figure 2. The decision where each
parameter has to be placed (request, resource, or response)
can be documented in the quality ontology, since this place-
ment depends only on the property and not on the assigned
value. In the end, this results in descriptions that not only
indicate the functional properties of an API, but also the
quality parameters as perceived by members of the user’s
social graph.

5 Related Work
Related work can be split in two parts: (i) research on de-
scribing Web APIs in general and (ii) research on judg-
ing and documenting Web API quality. We have treated
Web API description efforts in detail in (Verborgh et al.
2012) and therefore focus exclusively on Web API qual-
ity in the current paper. A famous quote by Robert M.
Pirsig in his book Zen and the Art of Motorcycle Mainte-
nance goes “even though quality cannot be defined, you
know what it is”. Common terms in the context of Web
API quality are Quality of Service (QoS), usually refer-
ring to network-related quality factors such as service re-
sponse time, latency, or loss; and Service Level Agree-
ments (SLAs), documents in plain language terms defining
among others the mean time between failures, the mean
time to repair, and the mean time to recovery. An ex-
emplary SLA document guaranteeing a 99.9% uptime for
a concrete Web API can be seen in Google, Inc. (2012).

The ISO/IEC 9126 standard (2001), partly superseded by
the standard ISO/IEC 25000 (2005), defines quality metrics
for software that, to some extent, can be applied to Web
APIs as well. Concretely, these quality metrics are func-
tionality, reliability, usability, efficiency, maintainability,
and portability.

In Erradi, Padmanabhuni, and Varadharajan (2006), the
authors motivate research to extend Web services manage-
ment platforms with more sophisticated control mechanisms
to cater for differentiated service offerings given the varia-
tion of contexts in which a Web service could be used and
the resulting variation in QoS expectations. Where most
Web services platforms are based on a best-effort model,
which treats all requests uniformly without any type of
service differentiation or prioritization, the authors present
WS-DiffServ, a service differentiation middleware based on
prioritization, which leverages service requestor profiles to
classify service requests.

Tosic describes in his Ph.D. thesis (2004) so-called
classes of service, a mechanism for differentiation of service
and QoS that, according to the author, incurs less overhead
than custom-made SLAs, user profiles, and other alterna-
tives. For the concrete description of service classes, Tosic
developed the Web Service Offerings Language (WSOL),
which is compatible with the Web Service Definition Lan-
guage (WSDL).

Ludwig et al. from IBM Research describe the Web
Service Level Agreement (WSLA) language (2003).
WSLAs are agreements between a service provider and

a customer and as such define the obligations of the parties
involved, primarily the obligation of a service provider to
perform a service according to agreed-upon guarantees for
service parameters, such as availability, response time and
throughput. Guarantees are defined in detail, including the
quality measurement algorithms.

An OASIS specification (Kim et al. 2011) provides a stan-
dard for quality factors of Web services in their develop-
ment, usage and management. Web services usually have
distinguished characteristics and, as a result, require their
own quality factors. For instance, as the quality of Web
services can be altered in real-time according to changes
by the service provider, considering real-time properties of
Web services is very meaningful. The specification presents
quality factors of Web services with definition, classifica-
tion, and sub-factors case by case.

6 Conclusion
Functionality is an essential element in API descriptions, but
it does not tell the whole story. To compare APIs with sim-
ilar functionality from different providers, quality parame-
ters need to be taken into account. These parameters are all
the more relevant if they are are assessed by people in one’s
social graph, effectively turning them into social parameters.
RESTdesc is able to integrate functional elements and social
parameters elegantly into a single description that allows
autonomous agents, on behalf of their owners and reckoning
with their owners’ social connections, to decide what API is
the best to use in a given context.

In more than 20 years of Web development, a lot of re-
search efforts have been put into describing Web services.
Fundamental questions in service matching and compos-
ing under quality-of-service constraints have been tackled.
However, the recent revival of resource-driven REST APIs,
as opposed to the heavy WS-* services, combined with
the flourishing of social networks, leads us to the question
whether the old solutions are fit for today’s Web.

RESTdesc offers descriptions that prioritize finding the
right API for the job, and strives to do this with the elegance
that is ubiquitous in modern resource-oriented design. We
believe that descriptions should focus on a user’s perception
of the application instead of on technical details. Therefore,
embracing social parameters has been a logical step in the
RESTdesc vision, which is evident from the seamless inte-
gration of these parameters into existing descriptions. You
can follow the evolution of RESTdesc at http://restdesc.org/.

Acknowledgments
The research activities as described in this paper were
funded by Ghent University, the Interdisciplinary Institute
for Broadband Technology (IBBT), the Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders (IWT), the Fund for Scientific Research Flanders (FWO
Flanders), and the European Union.

This work was partially supported by the European Com-
mission under Grant No. 248296 FP7 I-SEARCH project.
Joaquim Gabarro is partially supported by TIN-2007-66523
(FORMALISM), and SGR 2009-2015 (ALBCOM).

85

References
Berners-Lee, T., and Connolly, D. 2009. Notation3 (N3): A
readable RDF syntax. W3C Recommendation. Available at
http://www.w3.org/TeamSubmission/n3/.
Berners-Lee, T.; Connolly, D.; Kagal, L.; Scharf, Y.; and
Hendler, J. 2008. N3Logic: A logical framework for the
World Wide Web. Theory and Practice of Logic Program-
ming 8(3):249–269.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked Data
– The Story So Far. International Journal On Semantic Web
and Information Systems 5(3):1–22.
De Roo, J. 1999–2012. Euler proof mechanism. Available
at http://eulersharp.sourceforge.net/.
DuVander, A. 2011. 4,000 Web APIs: What’s hot and what’s
next? Available at http://blog.programmableweb.com/2011/
10/03/4000-web-apis-whats-hot-and-whats-next/.
Erradi, A.; Padmanabhuni, S.; and Varadharajan, N. 2006.
Differential QoS support in Web Services Management. In
Proceedings of the IEEE International Conference on Web
Services, 781–788. Washington, DC, USA: IEEE Computer
Society.
Feier, C.; Polleres, A.; Dumitru, R.; Domingue, J.; Stoll-
berg, M.; and Fensel, D. 2005. Towards intelligent Web
services: the Web Service Modeling Ontology (WSMO).
In 2005 International Conference on Intelligent Computing
(ICIC’05).
Fielding, R. T., and Taylor, R. N. 2002. Principled design of
the modern Web architecture. ACM Transactions on Internet
Technology 2(2):115–150.
Fielding, R. T. 2008. REST APIs must be
hypertext-driven. Untangled – Musings of Roy T.
Fielding. Available at http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven.
Golbeck, J., and Hendler, J. 2008. A Semantic Web ap-
proach to the provenance challenge. Concurrency and Com-
putation: Practice and Experience 20(5):431–439.
Golbeck, J.; Parsia, B.; and Hendler, J. 2003. Trust net-
works on the Semantic Web. In Cooperative Information
Agents VII, volume 2782 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 238–249.
Google, Inc. 2012. Google Maps API Premier Service Level
Agreement. Available at http://www.google.com/enterprise/
earthmaps/maps˙sla.html.
Harth, A. 2012. Linked Services. Available at http:
//linkedservices.org/.
Huberman, B.; Romero, D.; and Wu, F. 2009. Social net-
works that matter: Twitter under the microscope. First Mon-
day 14(1):8.
International Organization for Standardization. 2001.
ISO/IEC 9126-1:2001. Available for purchase at

http://www.iso.org/iso/iso˙catalogue/catalogue˙tc/
catalogue˙detail.htm?csnumber=22749.
International Organization for Standardization. 2005.
ISO/IEC 25000:2005(E). Available for purchase at
http://www.iso.org/iso/iso˙catalogue/catalogue˙tc/
catalogue˙detail.htm?csnumber=35683.
Joinson, A. N. 2008. Looking at, looking up or keeping up
with people? – motives and use of Facebook. In Proceedings
of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, CHI ’08, 1027–1036. New
York, NY, USA: ACM.
Kim, E.; Lee, Y.; Kim, Y.; Park, H.; Kim, J.;
Moon, B.; Yun, J.; and Kang, G. 2011. Web Ser-
vices Quality Factors Version 1.0. 22 July 2011.
OASIS Committee Specification 01. Available at
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/
v1.0/cs01/WS-Quality-Factors-v1.0-cs01.html.
Ludwig, H.; Keller, A.; Dan, A.; King, R. P.; and Franck,
R. 2003. Web Service Level Agreement (WSLA) – Lan-
guage Specification. Available at http://www.research.ibm.
com/wsla/WSLASpecV1-20030128.pdf.
Martin, D.; Burstein, M.; McDermott, D.; McIlraith, S.;
Paolucci, M.; Sycara, K.; McGuinness, D.; Sirin, E.; and
Srinivasan, N. 2007. Bringing semantics to Web services
with OWL-S. World Wide Web 10:243–277.
Ratanaworabhan, P.; Livshits, B.; and Zorn, B. G. 2010.
JSMeter: Comparing the behavior of JavaScript benchmarks
with real Web applications. In Proceedings of the USENIX
Conference on Web Application Development.
Tosic, V. 2004. Service Offerings for XML Web Services and
Their Management Applications. Ph.D. Dissertation, De-
partment of Systems and Computer Engineering, Carleton
University, Ottawa, Canada.
Verborgh, R.; Steiner, T.; Van Deursen, D.; Van de Walle, R.;
and Gabarro, J. 2011a. Efficient Runtime Service Discovery
and Consumption with Hyperlinked RESTdesc. In Proceed-
ings of the 7th International Conference on Next Generation
Web Services Practices, 373–379.
Verborgh, R.; Van Deursen, D.; Mannens, E.; Poppe, C.; and
Van de Walle, R. 2011b. Enabling context-aware multime-
dia annotation by a novel generic semantic problem-solving
platform. Multimedia Tools and Applications special issue
on Multimedia and Semantic Technologies for Future Com-
puting Environments.
Verborgh, R.; Steiner, T.; Van Deursen, D.; De Roo, J.;
Van de Walle, R.; and Gabarro, J. 2012. Description and In-
teraction of RESTful Services for Automatic Discovery and
Execution. Multimedia Tools and Applications. Accepted
for publication.
Zuckerberg, M., and Taylor, B. 2010. The open graph pro-
tocol. Available at http://www.opengraphprotocol.org/.

86

