
Clustering Media Items Stemming
from Multiple Social Networks

THOMAS STEINER1 , RUBEN VERBORGH2 , JOAQUIM GABARRO1 , ERIK
MANNENS2 AND RIK VAN DE WALLE2

1 Universitat Politècnica de Catalunya – Department LSI, Spain
2Ghent University – iMinds – Multimedia Lab, Belgium

Email: tsteiner@lsi.upc.edu

We have created and evaluated an algorithm capable of deduplicating and clustering exact- and
near-duplicate media items that get published and shared on multiple social networks in the context
of events. This algorithm works in an entirely ad-hoc manner, without any pre-calculation. When
people attend events, they more and more share event-related media items publicly on social
networks to let their social network contacts relive and witness the attended events. In the past,
we have worked on methods to accumulate such public user-generated multimedia content in order
to summarize events visually, for example, in the form of media galleries or slideshows. In this
paper, first, we introduce social-network-specific reasons and challenges that cause near-duplicate
media items. Second, we detail an algorithm for the task of deduplicating and clustering exact-
and near-duplicate media items stemming from multiple social networks. Finally, we evaluate the

algorithm’s strengths and weaknesses and show ways to address the weaknesses efficiently.

Keywords: clustering, deduplication, social networks, media items, event summarization, media galleries,
slideshows

Received 14 February 2013; revised 23 July 2013

1. INTRODUCTION

1.1. Motivation and Previous Work

Mobile devices like smartphones, tablets, or digital cameras
together with social networks enable people to create, share,
and consume enormous amounts of media items like photos
and videos. Mobile devices are omnipresent at all sorts of
events, where—given a stable network connection—part
of the event-related media items are published on social
networks, both as the event happens and afterwards, once
a stable network connection has been re-established.

In the past, we have developed and evaluated an application
and related methods for media item enrichment [1, 2, 3, 4]
to provide a scalable and near-realtime solution that realizes
event summarization and media item compilation in form
of media galleries. For any event with given event title(s),
(potentially vague) event location(s), and (arbitrarily fine-
grained) event date(s), with our approach, we first extract
binary media item data from social networks or media item
hosting platforms. Second, we deduplicate exact and near-
duplicate media items to then cluster similar media items for
the ultimate goal of generating media galleries or slideshows.
In this paper, we focus on the media item clustering and
deduplication task in the context of multiple social networks,
which comes with its very specific challenges that we will
detail and motivate in Section 2.

1.2. Definitions

Camera Shot Boundary Detection In video production and
filmmaking, a shot is a series of frames that runs for an
uninterrupted period of time. Shots are always filmed with
a single camera and can be of any duration. Camera shot
boundary detection is a field of research of video processing.

Social Media Item We define a social media item as either
a photo (image) or video that was publicly shared or published
on at least one social network. In the following, we will use
the shorter term media item rather than the full term.

Exact and Near-Duplicates for Photos We define two media
items of type photo as exact-duplicates, if their pixel contents
are exactly the same. We define two media items of type
photo as near-duplicates, if their pixel contents differ no
more than a given threshold after resampling.

Exact and Near-Duplicates for Videos We define two media
items of type video as exact-duplicates, if their pixel contents
are frame by frame exactly the same. We define two media
items of type video as near-duplicates, if their pixel contents
per frame differ no more than a given threshold. In practice,
we lower this condition and instead of every frame consider
only frames at camera shot boundaries [5], which accelerates
the process without reducing the precision noticeably. We
make no requirements on the audio, i.e., two videos in two
different languages that fulfill the pixel contents equality

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

2 T. STEINER, R. VERBORGH, J. GABARRO, E. MANNENS, AND R. VAN DE WALLE

condition are considered exact-duplicates. Note that we
also do not consider video subsegments near-duplicates, so
a media fragment [6] is considered distinct.

Special Case of Photo Contained in a Video We define the
special case of a photo being contained in a video, if the pixel
contents of a photo differ no more than a given threshold from
the pixel contents of any one of the frames of a video. In
practice, we lower this condition and instead of every frame
consider only frames at camera shot boundaries.

1.3. Paper Structure

Section 2 motivates the chosen approach in the context of
how users interact with, modify, and consume media items in
social networks. Section 3 details our clustering algorithm’s
design goals, its high- and low-level matching conditions, and
its implementation. In Section 4, we introduce the events used
for our experiments to then evaluate the clustering algorithm
and discuss the algorithm’s strengths and weaknesses. In
Section 5, we outline how the algorithm can be used for
video clustering. Related work in the field of image and
video clustering is covered in Section 6. The paper ends with
an outlook on future work and a conclusion in Section 7.

2. PROBLEM STATEMENT

Our work is situated in the broader context of summarizing
events based on social network data. In order to get an
overview of a given event based on a potentially huge set
of event-related media items, this set of media items needs
to be pruned to exclusively contain highly relevant media
items that are as representative for the event as possible.
Rather than showing the viewer all media items, clusters of
similar media items need to be formed. Within each cluster,
the most representative media item has to be recognized as
such, according to well-defined criteria. Undesired duplicate
or near-duplicate content in the context of social networks
arises in a number of situations that we will illustrate in
the following. We highlight that the stated problem is
distinct from the general image and video clustering problem,
where features such as Scale-Invariant Feature Transform
(SIFT) [7] excel. All shown examples of media items below
were actually shared on social networks and were clustered
correctly as near-duplicates by our clustering algorithm,
which we will detail in Section 3.

Different Viewing Angle When two people attend the same
event and create media items at roughly the same time and
covering the same scene, their media items will be similar
and—the capturing devices’ qualities aside—only differ in
the viewing angle. Figure 1 shows a concrete example.

Logo, Watermark, Lower Third, or Caption Insertion
Oftentimes, organizations or individuals insert logos,
watermarks, lower thirds, or captions into media items to
highlight their origin, to convey related information, or to
claim ownership of a media item. An example of caption,
logo, and lower third insertion can be seen in Figure 2.

(a) Viewing angle 1 (b) Viewing angle 2

FIGURE 1: Slightly different viewing angles of a concert stage

(a) Original (b) Caption (c) Lower third

FIGURE 2: Caption, logo, and lower third insertion for a speaker

(a) Original (b) Cropped

FIGURE 3: Original and cropped version of a media item

Cropping Cropping refers to the removal of the outer parts
of a media item to improve framing, accentuate subject
matter, or to (lossily) change the aspect ratio. Cropping
either happens manually via an image editing application,
or, more often, by the social networks themselves to obtain
a square aspect ratio that better fits the timeline view of users,
as can be seen in the example in Figure 3.

Different Keyframes We have shown an approach to
camera shot boundary detection in [5]. Different frames
stemming from the same camera shot can occur on social
networks, when preview heuristics attempt to auto-select
a well-identifying poster frame from a video with different
approaches, typically resulting in different frames for
different social networks. Figure 4 shows an example of
this phenomenon.

Aspect Ratio Changes with Squeezing or Stretching Aspect
ratio changes can either happen combined with cropping (and
thus losing parts of the media item), and/or combined with
squeezing or stretching (and thus deforming the media item).
Figure 5 shows an example where a media item gets stretched.

Photo Filters With the raising popularity of Instagram
with its 90 million monthly active users,3 photo filters
that, e.g., emulate retro PolaroidTM or tilt-shift effects, are
a considerable reason for near-duplicate media content on
social networks. Figure 6 shows a typical example.

3http://instagram.com/press/, accessed 04/30/2013

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

http://instagram.com/press/

CLUSTERING MEDIA ITEMS STEMMING FROM MULTIPLE SOCIAL NETWORKS 3

(a) Frame 1 (b) Frame 2

FIGURE 4: Two different frames from the same camera shot

(a) Original (b) Stretched

FIGURE 5: Original and stretched version of a media item

(a) Original (b) Photo filter

FIGURE 6: Original photo and version with an applied filter

3. MEDIA ITEM CLUSTERING ALGORITHM

3.1. Algorithm Design Goals

In the previous section, we have outlined reasons and sources
for duplicate and near-duplicate content. In this section, we
describe an algorithm tailored to deduplicating and clustering
exact-duplicate and near-duplicate media items. Design
goals for the algorithm include the capability to detect exact-
duplicate and near-duplicate media items in a timely, entirely
ad-hoc manner, without any pre-calculation. In general—and
especially for big events—event coverage on social networks
is very broad, i.e., there exist more media items than one
could consume in a reasonable time. In consequence, it is
tolerable for the algorithm to cluster media items aggressively,
rather than leaving too many media items unclustered. The
algorithm has a twofold approach to clustering: low-level
analysis, by looking at tile-wise pixel data combined with
high-level analysis, by detecting faces in media items. In the
following, we describe the face detection component of our
media item clustering algorithm.

3.2. Face Detection

Face detection is a computer vision technology that
determines the regions of faces in media items. Rotation-
invariant face detection aims to detect faces with arbitrary
rotation angles and is crucial as the first step in automatic
face detection for general applications, as face images on
social media are seldom upright and frontal. Face detection
is a subclass of the broader class of object detection. The

Viola–Jones object detection framework proposed in 2001
by Paul Viola and Michael Jones [8, 9] provides competitive
object detection rates in realtime and was motivated primarily
by the problem of face detection. In the future, this can also
enable more advanced features like face image retrieval [10]
or face recognition [11]. We use an algorithm that further
improves Viola–Jones, based on work by Huang et al. [12]
and Abramson et al. [13], in a JavaScript implementation
made available by Liu [14]. This algorithm is fast enough
to be applied to hundreds of media items in well less than
a second overall processing time on a standard laptop (mid-
2010 MacBook Pro).

3.3. Algorithm Description

Our near-duplicate media item clustering algorithm belongs
to the family of tile-wise histogram-based clustering
algorithms. As an additional semantic feature, the algorithm
considers detected faces as described above. For two media
items to be clustered, the following conditions have to be
fulfilled.

1. Out of m tiles of a media item with n tiles (m ≤ n),
at most tiles_threshold tiles may differ not more than
similarity_threshold from their counterpart tiles.

2. The numbers f1 and f2 of detected faces in both media
items have to be the same. We note that we do not
recognize faces, but only detect them.

The simplified algorithm pseudocode can be seen in
Listing 1. In the actual implementation, some speed
improvements, like, for example, looking up already
calculated distances4 have been applied; these were
omitted in the listing for legibility reasons. We calculate
the histograms and distances only once initially. The
clusters are then recalculated dynamically whenever either
tiles_threshold or similarity_threshold change. The given
values of rows = cols = 10 and tiles_threshold = 67 =
drows · cols · 2/3e and similarity_threshold = 10 were
determined empirically on a large corpus of event-related
media items and are known to deliver solid results. The
corpus has been made available publicly, see Subsection 4.2
for the details.

3.4. Algorithm Debug View

In order to illustrate the way the algorithm clusters media
items, Figure 7 shows a debug view of the algorithm for
two clustered media items related to the Grammy Awards
Nominations 2013 event. The red border around the media
item indicates at least one detected face. Independent
from the actual media item’s aspect ratio, the tile-wise
comparison always happens based on a potentially squeezed
square aspect ratio version. The two slightly different media
items (caption insertion, lighting change) were clustered,
because out of the 10 · 10 = 100 tiles, 85 of the minimum
required tiles_threshold of 67 tiles differed not more than
the similarity_threshold of 10 per tile. In both media items,

4distances[outerItem][innerItem] =
distances[innerItem][outerItem]

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 T. STEINER, R. VERBORGH, J. GABARRO, E. MANNENS, AND R. VAN DE WALLE

Input: mediaItems, a list of media items
Output: clusters, a list of clustered media items

init:

Algorithm settings
ROWS = 10
COLS = 10
TILES_THRESHOLD = ceil(ROWS * COLS * 2/3)
SIMILARITY_THRESHOLD = 10

Calculates tile-wise histograms
histograms = {}
faces = {}
for item in mediaItems

faces[item] = getFaces(item)

histograms[item] = {}
for tile in item

histograms[item][tile] = getHistogram(tile)
end for

end for

Calculates tile-wise distances
distances = {}
for outerItem in mediaItems

distances[outerItem] = {}
for innerItem in mediaItems
distances[outerItem][innerItem] = {}
for tile in histograms[outerItem]

distances[outerItem][innerItem][tile] =
abs(histograms[outerItem][tile] -

histograms[innerItem][tile])
end for

end for
end for

Calculates clusters
clusters = {}
for outerItem in mediaItems

clusters[outerItem] = []
for innerItem in mediaItems
if outerItem == innerItem then continue

similarTiles = 0
distance = distances[outerItem][innerItem]
for tile in distance

if distance[tile] <= SIMILARITY_THRESHOLD then
similarTiles++

end if
end for

Check condition 1 (tiles)
if similarTiles >= TILES_THRESHOLD then

Check condition 2 (faces)
if faces[outerItem] == faces[innerItem] then

clusters[outerItem].push(innerItem)
end if

end if
end for

end for

return clusters

Listing 1: Simplified pseudocode of the exact- and near-duplicate
media item deduplication and clustering algorithm

FIGURE 7: Algorithm debug view for two clustered media items
related to the Grammy Awards Nominations 2013 event (the red
border around the media items indicates at least one detected face)

exactly 1 face was detected. A screenshot of the complete
media item clustering application (with a different event)
is available online at http://twitpic.com/c02qfs/
full (accessed 04/30/2013).

3.5. Selection of a Cluster’s Visual Representative

In the previous subsections, we have introduced an algorithm
that clusters similar enough media items so that they can
be treated as just one media item. In this subsection, we
detail an algorithm for deciding on a particular cluster’s
visual representative, i.e., the one media item that will be
used from thereon to represent the whole cluster visually.
Naturally, through the way the clustering algorithm works,
the contained media items are already visually similar. The
algorithm’s objective is thus to decide on the one media
item with the highest quality. A straight-forward media item
quality criterion in the specific context of mobile devices
that are used in practice to create media items shared on
social networks is camera resolution. For example, the
original iPhone had a 2.0 Megapixel camera, whereas the
latest iPhone 5 has an 8.0 Megapixel camera. In consequence,
in a cluster that contains media items created with an original
iPhone and an iPhone 5, one certainly will prefer media items
created by the latter. A special case exists when a cluster
contains videos and photos, i.e., a photo in the cluster is
contained in a video in the cluster. In this case, we prefer
the moving video over the still photo. The algorithm ensures
this by artificially assigning a pseudo resolution of infinity
to videos, which guarantees them to outpace any photos in
the cluster. In practice, we found that the corner case of more
than one video being contained in a cluster, where we would
have to decide on the video with the highest quality, barely
occurs, which justifies the chosen approach. Yet we give
an outlook on how video deduplication and clustering could
work with our approach in Section 5. Listing 2 shows the
cluster visual representative selection algorithm that selects
the media item with the highest Megapixel resolution as the
cluster’s visual representative. In the future, more elaborate
heuristics that, e.g., consider compression rate or histogram
richness, may be applied.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

http://twitpic.com/c02qfs/full
http://twitpic.com/c02qfs/full

CLUSTERING MEDIA ITEMS STEMMING FROM MULTIPLE SOCIAL NETWORKS 5

Input: cluster, a cluster of media items
Output: representative, the visual representative

init:

maxPixels = 0
representative = null
for item in cluster

Ensure that videos will always be preferred
if item.type == ’video’ then

item.width = item.height = INFINITY
end if

resolution = item.width * item.height
if resolution >= maxPixels then

maxPixels = resolution
representative = item

end if
end for

return representative

Listing 2: Pseudocode of the cluster visual representative selection
algorithm that finds the highest quality media item of a cluster

4. EVALUATION

4.1. Experiments

We have evaluated the media item clustering algorithm with
two events from recent history with high social network
coverage that we will briefly describe in the following.

Grammy Awards Nominations 2013 The Grammy Award5

is an award by the National Academy of Recording Arts
and Sciences of the United States to recognize outstanding
achievement in the music industry. The annual ceremony
features performances by prominent artists, and some of the
awards are presented in a widely viewed televised ceremony.
On December 5, 2012, the nominees for the 55th Annual
Grammy Awards were announced at an event broadcasted
live by CBS titled Grammy Nominations Concert Live, during
which Taylor Swift and LL Cool J revealed the nominees
in several key categories. CBS suggested the hashtag
#GRAMMYNoms to be used for the event.

Victoria’s Secret Fashion Show 2012 The Victoria’s Secret
Fashion Show6 is an annual event sponsored by Victoria’s
Secret, a brand of lingerie and sleepwear. The show features
some of the world’s leading fashion models and is used by
the brand to promote and market its goods in a high-profile
setting. The show is a lavish event with elaborate costumed
lingerie and varying music by leading entertainers that attracts
hundreds of celebrities and entertainers. CBS suggested the
hashtag #VSFashionShow to be used for the event.

5http://en.wikipedia.org/wiki/2013_Grammy_
Awards, accessed 04/30/2013

6http://en.wikipedia.org/wiki/Victoria’s_
Secret_Fashion_Show, accessed 04/30/2013

4.2. Discussion

We have collected and made available publicly7 datasets
for both events with 379 media items for the Victoria’s
Secret Fashion Show 2012 event and 949 media items for
the Grammy Awards Nominations 2013 event. These media
items were collected using the media item extraction frame-
work described in [1, 2, 3, 4] using a mix of hashtag searches
with the official event hashtags combined with full-text
searches for event titles and variations thereof. Due to the
short-lived nature of communication on social networks, the
returned results of the media item extraction process itself
are not reproducible, however, the focus of this paper is on
media item deduplication and clustering. The clustering
parameters for the algorithm were set as follows.

1. rows = cols = 10
2. tiles_threshold = 67
3. similarity_threshold = 10
In the following, we discuss the clustering and

deduplication results. Figure 8 and Figure 9 show the top
clusters for the Victoria’s Secret Fashion Show 2012 and
the Grammy Awards Nominations 2013 events respectively.
For the prior, we have left face detection enabled, for the
latter, we disabled it. This resulted in bigger, however, less
precise clusters. Given the dataset sizes (379 media items for
Victoria’s Secret Fashion Show 2012 and 949 media items

7https://www.dropbox.com/sh/2llvjaut32juwrx/
7eGLodfP_2, accessed 04/30/2013

FIGURE 8: Top clusters for the Victoria’s Secret Fashion Show
2012 event (face detection enabled)

FIGURE 9: Top clusters ordered by cluster size for the Grammy
Awards Nominations 2013 event (face detection disabled; some
clusters span multiple rows)

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

http://en.wikipedia.org/wiki/2013_Grammy_Awards
http://en.wikipedia.org/wiki/2013_Grammy_Awards
http://en.wikipedia.org/wiki/Victoria's_Secret_Fashion_Show
http://en.wikipedia.org/wiki/Victoria's_Secret_Fashion_Show
https://www.dropbox.com/sh/2llvjaut32juwrx/7eGLodfP_2
https://www.dropbox.com/sh/2llvjaut32juwrx/7eGLodfP_2

6 T. STEINER, R. VERBORGH, J. GABARRO, E. MANNENS, AND R. VAN DE WALLE

for Grammy Awards Nominations 2013), this is fully aligned
with our algorithm’s design goals that state that aggressive
clustering is acceptable. We will pick some representative
examples from both events and have a closer look at the
clustering algorithm’s strengths and weaknesses.

4.2.1. Algorithm Strengths
Figure 10 shows a brunette fashion model in a pink robe
and a heart-shaped pink spotlight as central elements of
both media items. Even though the model is captured from
different angles and at different times, the media items are
successfully clustered due to the very identifying colors and
the high tile similarity. Figure 11 shows two different views
of a stage taken at slightly different times. The left media
item covers a detail of the scene, whereas the right media item
covers the entire stage. Due to the high tile-wise similarity
of the relevant tiles of the scene detail, the media items are
successfully clustered. Figure 12 shows two views of a stage
under different lighting conditions. Due to the tile color
tolerances and the high tile-wise similarity, the media items
are successfully clustered.

FIGURE 10: High tile-wise similarity of a dominating color

FIGURE 11: Cropped view of a stage scene

FIGURE 12: View of an entire stage and detail of a stage under
different lighting conditions

FIGURE 13: Zoomed view of a model with black bars left and right

FIGURE 14: Two views of the same stage with different person

Figure 13 shows two media items of the same model where
the left media item is a zoomed version of the right media
item with added black bars so that the resulting media item
has a square aspect ratio. Despite the differences, the media
items are successfully clustered. Figure 14 shows two views
of the same stage, however, with a different person. Due
to the dominating tile-wise similarity of the stage tiles, the
media items are correctly clustered.

4.2.2. Algorithm Weaknesses
Figure 15 shows five media items with pure white as the
dominating color and a pure black font, where users had
taken screenshots of the Grammy results from Web pages.
The algorithm in its previously described form clusters such
media items. This may or may not be desired. Likewise at
the other end of the color spectrum, Figure 16 shows two
media items of a woman with pure black as the dominating
color, one time with, and the other time without added
black bars to fit a letterbox aspect ratio. We note that
in its previously described form, the algorithm does not
cluster such media items (unless a really small number
tiles_threshold of required similar tiles is selected).

In the majority of cases, though, clustering such media
items is desired. Our response to both issues is to ignore
a certain part of the color spectrum in the algorithm’s
similarity measure. In the concrete case, ignoring pure
white and pure black correctly fixed the clustering in our
chosen example events in all but one cases, without negatively
impacting previously correctly formed clusters.

FIGURE 15: Pure white as dominating color stemming from
screenshots of Web pages

FIGURE 16: Black bars added to fit a 16:9 image in a 4:3 letterbox
(the white border is part of the original media item)

FIGURE 17: Entirely different thumbnail-size media items with
similar tile histograms, faces were not detected due to the small size

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

CLUSTERING MEDIA ITEMS STEMMING FROM MULTIPLE SOCIAL NETWORKS 7

Finally, Figure 17 shows two entirely different media
items that were incorrectly clustered as the tile histograms
were similar enough under the chosen similarity threshold.
The explanation for this is twofold. First, the original
source media items were very small thumbnail-like images,
which hindered face recognition (there is actually an unequal
number of faces in each image). Second, the way the
algorithm works, which is best understood by looking at
Figure 7, causes the tiles of very tiny media items like the
ones in question to blur.

4.2.3. The Impact of Face Detection
In our algorithm, face detection is an optional, per default
enabled feature that improves the precision of the clustering
at a slight cost of recall. Face detection can fail, e.g., with too
small media items or with only partially visible faces. In such
cases the face detection matching condition can be disabled.
However, detected faces in a cluster can still be used, e.g., for
the selection of the cluster’s visual representative.

4.2.4. The Impact of Parameters
We have experienced in our experiments that there is no
single perfect combination of algorithm parameters, so the
only way to address this issue (besides ignoring too small
media items, which in practice may be the easiest and best
solution) is to make the parameters flexible. Additionally, the
perceived Quality of Experience (QoE) [15] will differ from
user to user. In the future, an ad hoc Machine-Learning-based
approach for learning parameter settings may prove useful.
In our graphical user interface we have created sliders that let
the user interactively preview clustering changes. As noted
before, a screenshot of the application is available online at
the URL http://twitpic.com/c02qfs/full.

5. VIDEO CLUSTERING

In Section 3, we have introduced an algorithm for media item
clustering. In this section, we will outline the conceptual
framework that combines this algorithm with the previously
introduced video shot boundary detection algorithm from [5].
Its goal is to, on the one hand, directly cluster videos on a shot
boundary frame basis and, on the other hand, detect whether
a given photo is contained in a video.

5.1. Photo-contained-in-Video Workflow

In a first step, we detect shot boundaries as described before
in [5] for a given video. To illustrate this, Figure 18 shows
an excerpt of detected shot boundaries for a video related
to the Victoria’s Secret Fashion Show 2012 event. The first
frame of each camera shot’s film stripe is selected as the
particular shot’s representative frame. To detect whether
a given photo stemming from social networks is contained in
the video in question, the set of extracted shot representative
frames is compared with social network photos, examples
can be seen in Figure 8. We note, however, that especially
for longer videos (about 4 minutes and more) this approach
does not scale due to the sheer number of shot boundaries in

FIGURE 18: Excerpt of detected camera shot boundaries in
a Victoria’s Secret Fashion Show 2012 event video

common videos shared on social networks, which causes the
process to consume too much time in practice. As a work-
around, however, at the expense of exactness, the (typically
few) poster still frames that are commonly returned by video
hosting platform APIs like the one of YouTube8 can be used,
rather than extracting shot boundaries manually.

5.2. Video-contained-in-Video Workflow

To detect whether a given video A is a subsegment of another
video B, we propose a similar approach as outlined in the
previous subsection, with the sole difference that we need
to compare all detected shot boundary representative frames
of video A with the ones from video B. We recall that by
our definition subsegment videos are not considered near-
duplicates. Notwithstanding the above, in the following, we
sketch the overall idea. Naturally, this approach is even
less scalable with regards to system response time. The
practicable work-around is, as before, to limit oneself to
poster frames delivered by video hosting platform APIs. Our
experiments with other events besides the ones described in
Subsection 4.1 have shown that this approach works very
well for common social network user behavior. For example,
the 3:19 minutes long video of Mark Zuckerberg explaining
the design and engineering challenges behind Facebook’s
recently announced Graph Search product was initially
published on Facebook,9 however, people republished the
same video multiple times on YouTube. As the YouTube-
generated poster frames of each republished video were
similar—and even if the other video metadata like title
and description were different—the described work-around

8https://developers.google.com/youtube/2.0/
reference#youtube_data_api_tag_media:thumbnail,
accessed 04/30/2013

9https://www.facebook.com/about/graphsearch, ac-
cessed 04/30/2013

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

http://twitpic.com/c02qfs/full
https://developers.google.com/youtube/2.0/reference#youtube_data_api_tag_media:thumbnail
https://developers.google.com/youtube/2.0/reference#youtube_data_api_tag_media:thumbnail
https://www.facebook.com/about/graphsearch

8 T. STEINER, R. VERBORGH, J. GABARRO, E. MANNENS, AND R. VAN DE WALLE

approach was able to effectively deduplicate and cluster the
videos in question. We recall that our algorithm is explicitly
tailored to such observed social network sharing behavior.

6. RELATED WORK

Image Deduplication and Clustering Work on ordinal
measures that serve as a general tool for image matching
was performed by Bhat et al. in [16]. Chum et al. have
proposed a near-duplicate image detection method using
min-Hash and term frequency-inverse document frequency
(tf-idf) weighting [17]. They use a visual vocabulary of
vector quantized local feature descriptors based on Scale-
Invariant Feature Transform (SIFT) [7]. Gao et al. [18]
have proposed an image clustering method in the context
of Web image clustering, which clusters images based on
the consistent fusion of the information contained in both
low-level features and surrounding texts. Also in the context
of Web pages, Cai et al. [19] have proposed a hierarchical
clustering method using visual, textual, and link analysis.
Goldberger et al. [20] have combined discrete and continuous
image models based on a mixture of Gaussian densities with
a generalized version of the information bottleneck principle
for unsupervised hierarchical image set clustering. Chen et
al. [21] have introduced an image retrieval approach, which
tackles the semantic gap problem by learning similarities of
images of the same semantics.

Video Deduplication and Clustering More specialized
methods for video deduplication exist, for example [22, 23]
by Min et al. who, given the observation that transformations
tend to preserve the semantic information conveyed by the
video content, propose an approach for identifying near-
duplicate videos by making use of both low-level visual
features and high-level semantic features detected using
trained classifiers. In [24], Oliveira et al. report on four
large-scale online surveys wherein they have confirmed that
humans perceive videos as near-duplicates based on both
non-semantic features like different photo or audio quality,
but also based on semantic features like different videos of
similar content. A survey of video deduplication methods
has been conducted by Lian et al. in [25]. In [26], Guil et
al. have proposed a method for detecting copies of a query
video in a videos database that groups frames with similar
visual content while maintaining their temporal order. In [27],
Okamoto et al. have proposed an approach that is based on
fixed length video stream segments. By generating spatio-
temporal images, they employ co-occurrence matrices to
express features in the time dimension explicitly. Yi et al.
have proposed motion histograms in [28], where the motion
content of a video at pixel level is represented as a Pixel
Change Ratio Map (PCRM), which captures the motion
intensity, spatial location, and size of moving objects in
a video sequence.

Image and Video Deduplication and Clustering A method
for both photos and videos has been proposed by Yang et
al. [29]. The authors describe a system for detecting duplicate

images and videos in a large collection of multimedia data
that uses local difference patterns as the unified feature to
describe both images and videos. It has been demonstrated
that the proposed method is robust against common image-
processing tasks used to produce duplicates.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have treated the topic of media item
deduplication and clustering in different ways. We have
first defined the meaning of exact and near-duplicate for
both photos and videos, including the special case of a photo
being contained in a video. We have then motivated common
reasons for duplicate or near-duplicate content in the context
of social networks. Afterwards, we have introduced an
algorithm for media item deduplication and clustering with
low-level and semantic features, including an algorithm
for deciding on a cluster’s visual representative. We have
evaluated the algorithm with two recent events that had broad
social media coverage. The thereby generated datasets were
made available publicly and we invite researchers working on
related topics to use the data to compare the obtained results.
Finally, we have outlined how the algorithm can be used for
video clustering.

Future work will address the encountered algorithm
weaknesses, especially when dealing with small-sized media
items, albeit efficient improvements of the algorithm have
already been implemented in form of ignoring a part of
the color spectrum. Further, we will investigate different
categories of media items, e.g., parody10 or so-called
memes.11 Downloading big video files over the Internet
remains an issue that needs to be dealt with before any
of the outlined processing chain can begin. In the long-
term, we want to explore speed and scalability improvement
opportunities for the presented on-the-fly video deduplication
and clustering approaches as well as “photo contained in
video” detection algorithms, which—given the ad hoc nature
of social networks—requires a combination of fast camera-
shot detection algorithms tailored to streaming video and
parallel processing of image and video media items.

Media item deduplication and clustering of both exact and
near-duplicate media items is a fundamental step in dealing
with huge amounts of social media and media overload
in general. Highly popular media items not only tend to
receive many social interactions on the social network they
were initially published on, but also tend to get shared on
other social networks. Derivates of popular media items as
motivated in Section 2 further add noise to the social media
landscape. Concluding, with our media item deduplication
and clustering algorithm, we have contributed effective and
efficient tools to deal with social media overload and to
identify the few needles in the social network haystack.

10https://twitter.com/_Happy_Gilmore/statuses/
276196671430463488, accessed 04/30/2013

11https://twitter.com/RetweetabIe/status/
276175119620116480, accessed 04/30/2013

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

https://twitter.com/_Happy_Gilmore/statuses/276196671430463488
https://twitter.com/_Happy_Gilmore/statuses/276196671430463488
https://twitter.com/RetweetabIe/status/276175119620116480
https://twitter.com/RetweetabIe/status/276175119620116480

CLUSTERING MEDIA ITEMS STEMMING FROM MULTIPLE SOCIAL NETWORKS 9

ACKNOWLEDGEMENTS

This work was partially supported by the European
Commission under Grant No. 248296 FP7 I-SEARCH project,
The described research activities were funded by Ghent
University, the Institute for the Promotion of Innovation by
Science and Technology in Flanders, the Fund for Scientific
Research Flanders, and the European Union.

REFERENCES

[1] Khrouf, H., Atemezing, G., Rizzo, G., Troncy, R., and Steiner,
T. (2012) Aggregating Social Media for Enhancing Conference
Experience. International AAAI Conference on Weblogs and
Social Media. AAAI Publications.

[2] Rizzo, G., Steiner, T., Troncy, R., Verborgh, R., Redondo Gar-
cía, J. L., and Van de Walle, R. (2012) What fresh media are
you looking for?: retrieving media items from multiple social
networks. Proceedings of the 2012 International Workshop on
Socially-Aware Multimedia, New York, NY, USA SAM ’12,
pp. 15–20. ACM.

[3] Steiner, T., Verborgh, R., Valles, J., and de Walle, R. (2011)
Adding meaning to facebook microposts via a mash-up api and
tracking its data provenance. Next Generation Web Services
Practices (NWeSP), 2011 7th International Conference on, pp.
342–345.

[4] Steiner, T., Verborgh, R., Gabarró Vallés, J., and Van de
Walle, R. (2013) Adding meaning to social network microposts
via multiple named entity disambiguation APIs and tracking
their data provenance. International Journal of Computer
Information Systems and Industrial Management, 5, 69–78.

[5] Steiner, T., Verborgh, R., Gabarró Vallés, J., Hausenblas, M.,
Troncy, R., and Van de Walle, R. (2012) Enabling on-the-fly
video shot detection on YouTube. Proceedings of the 21st
International Conference on World Wide Web, April. ACM.

[6] Troncy, R., Mannens, E., Pfeiffer, S., Van Deursen, D.,
Hausenblas, M., Jägenstedt, P., Jansen, J., Lafon, Y., Parker,
C., and Steiner, T. (2012) Media Fragments URI 1.0 (basic).
W3C Recommendation. W3C.

[7] Lowe, D. G. (1999) Object recognition from local scale-
invariant features. Proceedings of the International
Conference on Computer Vision-Volume 2 - Volume 2,
Washington, DC, USA ICCV ’99, pp. 1150–. IEEE Computer
Society.

[8] Viola, P. and Jones, M. (2001) Rapid object detection using
a boosted cascade of simple features. Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, pp. I–511–I–518
vol.1.

[9] Viola, P. and Jones, M. J. (2004) Robust real-time face
detection. Int. J. Comput. Vision, 57, 137–154.

[10] Morikawa, C. and Aizawa, K. (2012) Iconic Visual Queries
for Face Image Retrieval. Journal of Convergence, 3, 39–46.

[11] Satone, M. and Kharate, D. G. (2012) Face Recognition Based
on PCA on Wavelet Subband of Average-Half-Face. Journal
of Information Processing Systems, 8, 483–494.

[12] Huang, C., Ai, H., Li, Y., and Lao, S. (2007) High-performance
rotation invariant multiview face detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29, 671–686.

[13] Abramson, Y., Steux, B., and Ghorayeb, H. (2007) Yet even
faster (yef) real-time object detection. Int. J.
Intell. Syst. Technol. Appl., 2, 102–112.

[14] Liu, L. (2012). JavaScript Face Detection Explained.
http://liuliu.me/eyes/javascript-face-
detection-explained/. Accessed 02/14/2013.

[15] Bhattacharya, A., Wu, W., and Yang, Z. (2011) Quality of
experience evaluation of voice communication systems using
affect-based approach. , ?, 929–932.

[16] Bhat, D. N. and Nayar, S. K. (1998) Ordinal measures for
image correspondence. IEEE Trans. Pattern Anal. Mach.
Intell., 20, 415–423.

[17] Chum, O., Philbin, J., and Zisserman, A. (2008) Near
duplicate image detection: min-hash and tf-idf weighting. In
Everingham, M., Needham, C. J., and Fraile, R. (eds.), BMVC,
pp. 1–10. British Machine Vision Association.

[18] Gao, B., Liu, T.-Y., Qin, T., Zheng, X., Cheng, Q.-S., and Ma,
W.-Y. (2005) Web image clustering by consistent utilization of
visual features and surrounding texts. Proceedings of the 13th

Annual ACM International Conference on Multimedia, New
York, NY, USA MULTIMEDIA ’05, pp. 112–121. ACM.

[19] Cai, D., He, X., Li, Z., Ma, W.-Y., and Wen, J.-R. (2004)
Hierarchical clustering of WWW image search results using
visual, textual and link information. Proceedings of the 12th

Annual ACM International Conference on Multimedia, New
York, NY, USA MULTIMEDIA ’04, pp. 952–959. ACM.

[20] Goldberger, J., Gordon, S., and Greenspan, H. (2006)
Unsupervised image-set clustering using an information
theoretic framework. Image Processing, IEEE Transactions
on, 15, 449–458.

[21] Chen, Y., Wang, J. Z., and Krovetz, R. (2003) Content-based
image retrieval by clustering. Proceedings of the 5th ACM
SIGMM International Workshop on Multimedia Information
Retrieval, New York, NY, USA MIR ’03, pp. 193–200. ACM.

[22] Min, H.-s., Choi, J. Y., De Neve, W., and Ro, Y. M. (2011)
Bimodal fusion of low-level visual features and high-level
semantic features for near-duplicate video clip detection.
Image Commun., 26, 612–627.

[23] Wu, X., Ngo, C.-W., Hauptmann, A. G., and Tan, H.-K. (2009)
Real-time near-duplicate elimination for web video search
with content and context. Trans. Multi., 11, 196–207.

[24] Oliveira, R. D., Cherubini, M., and Oliver, N. (2010) Looking
at near-duplicate videos from a human-centric perspective.
ACM Trans. Multimedia Comput. Commun. Appl., 6, 15:1–
15:22.

[25] Lian, S., Nikolaidis, N., and Sencar, H. (2010) Content-based
video copy detection – a survey. In Sencar, H., Velastin, S.,
Nikolaidis, N., and Lian, S. (eds.), Intelligent Multimedia
Analysis for Security Applications, Studies in Computational
Intelligence, 282, pp. 253–273. Springer Berlin Heidelberg.

[26] Guil, N., González-Linares, J., Cózar, J., and Zapata, E. (2007)
A clustering technique for video copy detection. In Martí,
J., Benedí, J., Mendonça, A., and Serrat, J. (eds.), Pattern
Recognition and Image Analysis, Lecture Notes in Computer
Science, 4477, pp. 451–458. Springer Berlin Heidelberg.

[27] Okamoto, H., Yasugi, Y., Babaguchi, N., and Kitahashi, T.
(2002) Video clustering using spatio-temporal image with fixed
length. Multimedia and Expo, 2002. ICME ’02. Proceedings.
2002 IEEE International Conference on, pp. 53–56 vol.1.

[28] Yi, H., Rajan, D., and Chia, L.-T. (2005) A new motion
histogram to index motion content in video segments. Pattern
Recognition Letters, 26, 1221–1231.

[29] Yang, X., Zhu, Q., and Cheng, K.-T. (2009) Near-duplicate
detection for images and videos. Proceedings of the First ACM
workshop on Large-scale multimedia retrieval and mining,
New York, NY, USA LS-MMRM ’09, pp. 73–80. ACM.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

http://liuliu.me/eyes/javascript-face-detection-explained/
http://liuliu.me/eyes/javascript-face-detection-explained/

	Introduction
	Motivation and Previous Work
	Definitions
	Paper Structure

	Problem Statement
	Media Item Clustering Algorithm
	Algorithm Design Goals
	Face Detection
	Algorithm Description
	Algorithm Debug View
	Selection of a Cluster's Visual Representative

	Evaluation
	Experiments
	Discussion

	Video Clustering
	Photo-contained-in-Video Workflow
	Video-contained-in-Video Workflow

	Related Work
	Conclusions and Future Work

