

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all

UGent research publications. Ghent University has implemented a mandate stipulating that all

academic publications of UGent researchers should be deposited and archived in this repository.

Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:

Description and Interaction of RESTful Services for Automatic Discovery and Execution

Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Jos De Roo, Rik Van de Walle, and

Joaquim Gabarró Vallés

In: Proceedings of the FTRA 2011 International Workshop on Advanced Future Multimedia

Services, 2011

To refer to or to cite this work, please use the citation to the published version:

Verborgh R., Steiner, T., Van Deursen D., De Roo, J., Van de Walle, R., and Gabarró Vallés,

J. (2011). Description and Interaction of RESTful Services for Automatic Discovery and

Execution. Proceedings of the FTRA 2011 International Workshop on Advanced Future

Multimedia Services

Description and Interaction of RESTful Services for
Automatic Discovery and Execution

Abstract

Many have left their footprints on the field of semantic
RESTful Web service description. Albeit some of the
propositions are even W3C Recommendations, none of
the proposed standards could gain significant adoption
with Web service providers. Some approaches were sup-
posedly too complex and verbose, others were considered
not RESTful, and some failed to reach a significant ma-
jority of API providers for a combination of the reasons
above. While we neither have the silver bullet for uni-
versal Web service description, with this paper, we want
to suggest a lightweight approach called RESTdesc. It
expresses the semantics of Web services by pre- and post-
conditions in simple N3 rules, and integrates existing
standards and conventions such as Link headers, HTTP
OPTIONS, and URI templates for discovery and interac-
tion. This approach keeps the complexity to a minimum,
yet still enables service descriptions with full semantic
expressiveness. A sample implementation on the topic
of multimedia Web services verifies the effectiveness of
our approach.

1 Introduction

The immense diversity of various multimedia analysis
and processing algorithms makes it difficult to integrate
them in an automated platform to perform compound
tasks. Yet, recent research has indicated the importance
of the fusion of different techniques [2]. It is impossi-
ble to make different algorithms interoperate if there
are no agreements or guidelines on how communication
should happen. A coordinating platform can only se-
lect algorithms based on their capabilities in presence
of a formal description detailing their preconditions and
postconditions.

In this paper, we show how to lift multimedia algo-
rithms to the level of Semantic Web services1 with a
formal description mechanism that follows a pragmatic
approach. Rather than reinventing the existing method-
ologies, which focus on technical process details, we want
to express an algorithm’s functionality in a way that
captures its functionality without requiring lengthy spec-
ifications. Our intention is to use existing standards such

1 We use the terms “API” and “(Web) service” synonymously
throughout this paper.

as the HTTP protocol, Link headers, and URI templates
and apply common best practices for implementing mul-
timedia algorithms as true Semantic Web services. The
aim is a versatile description and communication model,
enabling fully automated service discovery and execu-
tion, even under changing conditions. The sole starting
point is a Web address of a server, required additional
information is gathered at runtime.

Can a client just follow its nose—like humans do—and
access the right service by reasoning? We will explain
our approach by three real-world multimedia use cases,
each of which represents challenges that are currently
not fully addressed by alternative techniques. They will
illustrate the power of our method and demonstrate to
the reader that its apparent simplicity accommodates
far-reaching possibilities.

The remainder of this paper is structured as follows:
Section 2 gives an overview on related work. Section 3
introduces RESTful Multimedia Web services. Section 4
describes our RESTdesc approach for Semantic Web ser-
vice description. Section 5 details how our approach can
be used for automatic service discovery. Section 6 shows
how our approach is able to adapt to change and react
dynamically on errors. The paper terminates with Sec-
tion 7, which provides a conclusion and gives an outlook
on future work.

We have implemented a sample multimedia Web ser-
vice with mock data that follows our description approach.
It is available at our RESTdesc testing website2.

2 Related Work

2.1 Web Service Description Language

The description of Web services has a long history. The
XML-based Web Service Description Language (WSDL,
[9, 10]) provided one of the first models. WSDL focuses
on the communicational aspect of Web services, looking
from a message-oriented point of view. The details of the
message format are written down in a very verbose way
and concretized to actual bindings such as SOAP [19]
or plain HTTP [13]. Finally, the description can contain
endpoints, which implement the specified bindings.

For our use case, we spot two major problems with the
use of WSDL. First, WSDL only provides the mechanisms

2 RESTdesc testing website: http://restdesc.no.de/.

http://restdesc.no.de/

2

to characterize the technical implementation of Web
services. It does not provide the means to capture the
functionality of a service. For example, a service that
counts the number of words in a text will be described by
WSDL as an interface, which accepts a string and outputs
an integer. Clearly, an infinite number of algorithms share
those input and output properties, so this information is
insufficient to infer any meaning or functionality.

Secondly, in practice, a WSDL description is used to
generate module source code automatically, which is then
compiled into a larger program. If the description changes,
the program no longer works, even if such a change leaves
the functionality intact. A concrete example of such brit-
tleness is the switch from 32 to 64 bit integer identifiers
that occurred at some point in Google’s AdWords API, a
small change in the service’s WSDL file that required the
complete recompilation of the relevant pieces of source
code [33]. This indicates that WSDL is not well adapted
to real-world circumstantial changes.

The above problems indicate why WSDL cannot offer
automatic service discovery at runtime and why we should
investigate other possibilities.

2.2 Semantic Annotations for WSDL

The W3C Recommendation named Semantic Annota-
tions for WSDL and XML Schema (SAWSDL, [24]) de-
scribes a way how to add semantic annotations to various
parts of a WSDL document such as interfaces and op-
erations, and input and output message structures. In
addition to that, Web services can be assigned a category
with the objective of making them discoverable in a cen-
tral registry of Web services. SAWSDL also defines an
annotation mechanism for specifying the data mapping
of XML Schema [15, 34] types to and from ontologies,
often referred to as up- and down-lifting. While the stan-
dard fulfills parts of our requirements, it inherits all the
disadvantages from WSDL, specifically its brittleness
and verbosity.

2.3 Web Application Description Language

The Web Application Description Language (WADL, [20])
is another Web service description format, also XML-
based, which does not degrade HTTP to a tunneling
mechanism for SOAP, but advocates proper use of all the
aspects of the HTTP protocol. Services that behave in
this way are oftentimes (incorrectly3) called RESTful [14],
the properties of which we will explain in Section 3.
While WSDL 2.0 is also capable of specifying bindings
to RESTful endpoints, it still requires the abstractions
that enable bindings to SOAP and others. WADL, on the
other hand, was tailored to the needs of RESTful services,
but only exists as a W3C Member Submission and will
most likely never reach the W3C Recommendation status
of WSDL 2.0 [27].

3 We prefer the term “HTTP interface”, where most API
providers use the buzzword “RESTful API”.

In addition to that, WADL still suffers from the same
problem: it does emphasize the technical properties of
the underlying service and does not leave any room for
the semantics of the task it performs. This also means
that there is no way to automatically discover services
based on the desired functionality. Therefore, there is no
reason why WADL would be used any differently than
WSDL, as also argued by Joe Gregorio in [18].

The main criticism by the REST community, however,
is that WADL does document beforehand what, accord-
ing to the REST principles [14], should be discovered
dynamically at run-time. One of the fundamental prop-
erties of REST is the so-called hypermedia constraint,
which basically can be summarized as the constraint that
each server response should contain the possible next
steps the client can take, since the application state is
not stored on the client. It should be noted that WADL
could be used in this way at run-time, yet most current
usage continues to be beforehand.

2.4 Semantic Markup for Web Services

OWL-S [29] is a an OWL [32] ontology for describing
Semantic Web services in RDF [22]. A service description
consists of three parts: a profile, a model and a grounding.
Some aspects of profile and model are very similar, in the
sense that they both describe input, output, preconditions
and effects. The difference is that the profile is used
for discovery, while the model is used to control the
interaction.

Here, for the first time, we have an actual focus on
the functionality of a service which is separate from how
the interaction happens. However, whether this separa-
tion was successful is debatable, since there is no way to
enforce the consistency of profile and model of a single
service. Finally, the grounding part specifies the imple-
mentation of the service. The OWL-S submission defines
a grounding to WSDL, but other groundings are possible
(e.g., [36]). This means that the OWL-S description de-
scribes the functionality, whereas its grounding describes
the communication.

At least, this is what it is supposed to do. OWL-S input
and output types provide more or less the equivalent of
what a WSDL message format contains, albeit with RDF
types, so there is only a minimal added semantic value
on that level. The real possibilities lie in the use of
preconditions and postconditions (the latter under the
form of result effects), which allow to express complex
relationships between input and output values, finally
capturing the semantics and functionality of the service.

Unfortunately, there is no obligation to use these condi-
tions and the OWL-S submission only mentions the rule
languages KIF [16], DRS [30] and SWRL [21], in order of
increasing verbosity. Extensions to more light-weight rule
languages, such as Notation3 Logic [6], are possible [36].
The real problem here is that none of those languages are
integrated into the main service description, but rather
form subdocuments within it, which require a separate

3

interpretation. The conditions thus live in another con-
text, which are solely linked by identifiers but not by
semantics. As a result, agents lacking support for the
used rule language could parse the OWL-S constructs
in a service description document and skip the parts
they fail to understand—effectively ignoring important
conditions they should reckon with4.

Furthermore, while OWL-S offers functional descrip-
tions capable of automatic discovery of the capabilities of
a single service, it does not provide mechanisms to express
its relation to other services. Also, descriptions contain
redundancies and require a fair amount of vocabulary,
even to express conceptually simple services, and rely on
external groundings for technical implementations.

2.5 Linked Open Services

The obligation to make explicit the relation between
input and output is present within the Linked Open
Service (LOS, [26]) principles. However, these principles
also put constraints on how the service should behave,
dictating its interaction pattern. In essence, it requires
wrapping a SPARQL endpoint around a service. While
we have used a similar approach for multimedia algo-
rithms in the past [36], regular REST services offer far
more flexibility and target more general Web data con-
sumption.

2.6 Resource Linking Language

The Resource Linking Language (ReLL, [1]) aims to pro-
vide a natural mapping from RESTful services to RDF.
The authors recognize the issues regarding RESTful ser-
vice descriptions in general and provide an excellent
discussion thereof. ReLL differs from our approach in
that it only offers “static description of RESTful services
that does not cover [...] new resources or identification
and access schemes”, whereas we specifically aim to ad-
dress these cases in the context of automated service
discovery and consumption. Our work therefore strives
to “include the set of preconditions that must be satisfied
by a client to be able to consume a service”, together with
the postconditions that occur as a result of the service
call, as detailed in Subsection 4.2.

2.7 Universal Description, Discovery, and
Integration

The XML-based OASIS standard Universal Description,
Discovery, and Integration (UDDI, [4]) was developed to
enable the definition of a set of services supporting the
discovery and description of (i) businesses, organizations,
and other Web service providers, (ii) the Web services
that those institutions offer, and finally (iii) the technical

4 This behavior resembles that of Web browsers without
JavaScript support: they parse and render HTML but ig-
nore any script tags. Service descriptions, in contrast, al-
ways require a full interpretation for correct functionality.

interfaces, which may be used to access those services.
UDDI is based on a (at the time of writing of the spec-
ification) common set of industry standards, including
HTTP, XML, XML Schema, and SOAP. The standard
was designed to allow for the description and discovery
of both public services and non-public in-house services.
It was meant to be used as a service broker where parties
interested in a special service could go to and retrieve a
list of service providers offering the desired service (for
example, shipping address verification). Such services
would be described in the so-called Green Pages, includ-
ing not only technical details, but also contact details of
the Web service provider.

While for various reasons out of scope of this paper
UDDI could not gain the adoption its creators had hoped
for, the overall idea of automatically being able to select a
service from a (not necessarily central) registry of services
still seems useful to us. We will show in Section 5 how we
imagine this idea to work decentralized and dynamically
using our approach.

3 RESTful Multimedia Services

When we say RESTful service invocation, we refer to the
following REST principles [14]:

– Servers and clients are separated from each other by
a uniform interface. Both servers and clients have
well-defined responsibilities, also referred to as sep-
aration of concerns. This is to guarantee maximum
independence from the one and the other.

– All client requests are stateless, this means that each
request from a client has all the information that the
server needs to process it.

– Responses must define themselves as cacheable or
not using standard HTTP caching techniques.

– When layered systems (like load-balancing) are used,
this fact must not be exposed to the API user.

In RESTful APIs, resources are identified by URIs.
A resource is to be differentiated from its representation.
For example, a set of RDF triples (the resource) might be
represented in different serializations (syntaxes), such as
RDF/XML or Turtle. When one of these representations
gets manipulated, there is enough information to manipu-
late the represented resource, given the permission to do
so. Messages need to be self-descriptive, for example, the
media type of a message needs to make clear what can
be done with this message. Each representation needs
to communicate relevant related resources, or next steps
the client can take at each state.

To make this clearer, we introduce two related mul-
timedia services, one for face detection, and the other
for face recognition. A user agent can upload a photo
to the face detection service and use it to check for the
existence of faces in the uploaded image. If faces are
found, the user agent can use the face recognition service
to try to find out more details on the persons whose faces
are contained in the image. Each image is considered a

4

resource, for example represented by a binary image file
(like /photos/1). Each face is a resource, for example
represented by an RDF document serialized in Turtle, or
a cropped version of the entire image showing only the
particular face (like /photos/1/faces/1). Each person
is a resource (like /photos/1/persons/1), for example
represented by a string of the person’s name. Some of
the potential next steps after detecting faces could be, to
follow a link to a Web service that allows for recognizing
these faces, or starting from the first person on an image,
to follow a link to the next person on the image. We
will use these two sample Web services, namely a face
detection and a face recognition Web service, throughout
the paper.

4 RESTdesc Semantic Description

4.1 Motivation

The answer to the question whether Semantic Web service
description and Web service discovery are necessary needs
to be split up in two parts.

On the one hand there is the question whether Web
service description is needed. In RESTful systems, the
common opinion is that each message should be self-
descriptive enough so that user agents can make sense of
each message, given a documented media type that the
message is serialized in. On a pure technical layer this
works well. For example, let us imagine a very simple im-
age search engine that simply returns the most adequate
image of media type image/gif as the result to a query,
similar to Google’s “I’m feeling lucky” functionality. This
gives the user agent enough information to process the
response with its Graphics Interchange Format (GIF)
library, however, a priori it is not clear that the image
stands in a relation to a search query that the user agent
has used as an input. Therefore OpenSearch [11] defines
a description format, which can be used to describe a
search engine so that it can be used by search client
applications. While we could perfectly use OpenSearch
to describe this search API, even slight variations of the
API semantics render its use impossible. For instance, let
us imagine a Web font preview API where you give the
name of a Web font as an input, and get a GIF image
with a preview of the text “The quick brown fox jumps
over the lazy dog” in that very Web font as an output.
There is currently no universal way to describe the exact
functionality of such API, and yet it might be desirable
for a Web font vendor to announce its availability.

The second question is whether automatic discovery of
Web services is needed. The first approach for automatic
service discovery was UDDI, outlined in Section 2.7. It
was driven by the vision that central service registries
would serve as so-called Green Pages for parties interested
in a specific service. The problem with this approach,
however, is that companies do not work this way. There
is always a human being involved in the process [25]. We
see the potential of service discovery in the generation

and run-time supervision of automatic execution plans
as outlined in [37], a task that can highly profit from
discoverable service descriptions.

The before-mentioned OpenSearch protocol allows for
an interesting use case of service discovery. Web pages
can reference an OpenSearch description that user agents
can process and offer site-specific search automatically.
If we adapt this idea to our approach, user agents could
dynamically offer services related to a current resource,
if the resource points to a service description.

4.2 Deriving a functional description

By now, it is clear that we aim to provide a semantic
method to express the functionality of a service—as well
as its communication—in a concise way that appeals to
humans and can be processed automatically. The word
“semantic” obviously hints at the Semantic Web [7] and
its core language RDF [22].

Let us first revise what we actually want to express.
Continuing the example of Section 3, an informal expres-
sion for photo retrieval could be:

I can retrieve a photo by going to /photos/

and appending its identifier. (1)

An intuitive formalization of the above would be:

hasUri(request, {“/photos/”, id})∧
hasResponse(request, resp) ∧ represents(resp, photo)

∧ photoId(photo, id) (2)

This is straightforward to represent in RDF:

:request :uri ("/photos/" :id);
:response [:represents [:photoId :id]]. (3)

Upon closer inspection, it is clear that the formaliza-
tion (2)—and thus its RDF counterpart (3)—does not
contain all the semantics of the informal expression (1).
While (1) implies (2), the opposite implication (2)⇒ (1)
is broken, and thus the equivalence does not hold. In-
deed, fragment (3) states that there exists some request
which returns the photograph with the identifier speci-
fied in its URI. It does however not convey the implicit
intention of (1) that all requests with this URI structure
behave the same way. This is a problem of existential ∃
versus universal ∀ quantification, which has important
consequences that should be dealt with formally.

Revising (4) with quantifiers gives:

∀ photo : ∃ id, request, uri, resp :

hasUri(request, {“/photos/”, id})∧
hasResponse(request, resp)∧ represents(resp, photo)

∧ photoId(photo, id) (4)

However, this still remains insufficient, because the uni-
versal quantification introduces the claim that every pho-
tograph in the world possesses an identifier—a false state-
ment for the majority of photographs, with the exception

/photos/1
/photos/1/faces/1
/photos/1/persons/1

5

of those uploaded to the server. Similarly, requests exist
for such photographs only. Looking back at the informal
expression (1), we now spot the (again, implicit) assump-
tion that the photograph we want to retrieve has a known
identifier.

Therefore, our last revision of the formal expression
takes into account this notion as follows:

∀ photo, id : photoId(photo, id)⇒ ∃ request, uri, resp :

hasUri(request, {“/photos/”, id})
∧ hasResponse(request, resp)

∧ represents(resp, photo) (5)

The above expression now corresponds to the intended
meaning of (1): that a representation of every photo-
graph with an identifier can be retrieved by following
the constructed URI. Now the issue of expressing (5)
in RDF remains. The original RDF specification [22]
does not include a form of quantifiers. Although some
attempts have been made in the past (e.g., [31]), the
most successful intuitive is the W3C submission Nota-
tion3 (N3, [5]), which as an added benefit also includes
syntactical support for implications.

Expressing (5) in Notation3 gives:

@forAll :photo, :id.
@forSome :request.
{:photo :photoId :id.}

:implies
{:request :uri ("/photos/" :id);

:response [:represents :photo].}. (6)

Note the automatic existential quantification of blank
nodes. By turning the request also in a blank node and
using the full expressive power of Notation3, we can
conveniently write (6) as:

{?photo :photoId ?id.}
=>
{ :request :uri ("/photos/" ?id);

:response [:represents ?photo].}. (7)

This minimal syntax fully reflects the functionality of
the service as intended by (1).

4.3 RESTdesc description format

With the syntax and required concepts in mind, we now
look at existing recommendations, proposals, and vocabu-
laries that we can integrate to obtain an interchangeable
description format.

Since RESTful services are centered around the correct
use of the HTTP protocol, one of the obvious elements
we need is a way to describe HTTP requests. The HTTP
Vocabulary in RDF [23] is already widespread, and in
addition to that also is in W3C Working Draft status. It
defines all the necessary concepts to rigorously describe
HTTP messages, their structure, and their relationships.

The resource-oriented nature of RESTful services im-
plies the use of descriptive URIs, based on a structure

specific to each server. Therefore, we should be able to
express the relationship between a resource and its URI.
In an Internet-Draft, the IETF describes the concept of
URI templates [17] to refer to a category of resources.

Below is an example of a URI template for a person
in a photograph:

http://example.org/photos/{photoId}/persons/{personId}

The identifiers between the curly braces are variables,
which can be assigned a value. For example, to get the
person with identifier 3 on photograph 241, the URI gets
expanded to:

http://example.org/photos/241/persons/3

While URI templates are still in draft status, many
implementations and applications exist. In consequence
we decided that we should include them in our design.

Finally, we need a way to tie the URI templates to
HTTP request parameters such as the request URI. Also,
some additional template semantics are required, for
instance to describe what the response body contains.
Since such a vocabulary was not available yet, we created
the HTTP template ontology5.

Listing 1 shows the final description of the photo re-
trieval service. On a high level, we see the precondition,
followed by the request and the postcondition. Concepts
detailing precise semantics of the service are expressed in
a server-specific vocabulary6 (in this case, photo identi-
fiers) or by reusing publicly available vocabularies (here,
for people and depictions). The precondition thus states
that an object with a photo identifier is required. In the
postcondition, we use the HTTP vocabulary to describe
a GET request and its associated response. Finally, we
use the HTTP template ontology to specify the URI
template, and the contents of the response.

Contrary to its appearance, this short description con-
veys a vast amount of semantic information. Of course,
most importantly, there is the explicit relation express-
ing precisely how the input relates to the output. An
alternative way to look at the implication is to state
that the specified request only exists in presence of a
photograph. The semantics of the quantification have
been highlighted in Listing 2, which contains the same
description with the explicit quantifier syntax (prefixes
from this and further listings omitted for clarity). The
incorporation of the URI template is also particularly
strong: the variables in the URI have been bound to
the actual values that will be present during execution.
Interesting here is that these variables, due to the server-
specific ontology, do not only have an associated data
type, but fully linked semantics. For instance, if the server
describes the photoId predicate by specifying its range
as integers and its domain as photographs, this informa-
tion is propagated into the URI template. Also note that

5 Located at http://purl.org/restdesc/uri-template.
6 It is not obligatory to detail the server-specific vocabulary in

an ontology. Its consistent use across different descriptions
may suffice for interpretation and composition.

http://purl.org/restdesc/uri-template

6

we do not need an ontology for services: the description
is complete by the expression of its functionality.

Listings 3 to 5 show example descriptions of other
services on the same server. For photo upload (Listing 3),
we see the prerequisite is to have an image. Note that
the service description author is free to use any vocab-
ulary, in this case the FOAF ontology [8]. Since the
request URI is fixed, no URI template was used. The
response, in contrast, will have a Location header with
a URI containing the photo identifier. For the request,
we specify the format of the POST body. Note how the
precondition of photo retrieval (Listing 1) naturally fol-
lows from the postcondition of photo upload, hinting at
a possible causality.

This effect is also visible in Listing 4 and Listing 5,
which both demonstrate the ease of expressing complex
conditions. The required expressions involve a compli-
cated indirection (e.g., “the photograph contains a region
that depicts a person”), yet they can be understood quite
easily, while the formal semantics are sound.

When we overlook all of the above, it becomes ap-
parent that RESTdesc descriptions are a simple and
elegant way of describing Web services in an integrated
semantic manner. They capture the functional aspects
formally without resorting to complex artifices. The use
of the HTTP vocabulary and semantic identifiers was
taken from previous work [35], as well as the use of
Notation3 conditions [36], both which were extended and
combined into a single method. The resulting RESTdesc
descriptions can be used for automatic discovery, service
composition, and execution. These and other aspects will
be demonstrated in Subsection 5.2.

4.4 Automated interpretation and composition

An interesting fact about Notation3 implications is
that, besides the descriptive/declarative semantics we
have used so far, they also entail operational semantics.
This means that, given a reasoner that is able to make
modus ponens inferences, the following action takes place:

P ⇒ Q,P

Q
(8)

This is a very relevant property for RESTdesc descrip-
tions, which enables context-based service discovery.

For example, we might want to know what we can do
on a server given the situation where we have an image.
RESTdesc makes this a trivial task. The triple (9) below
expresses our current condition:

<http://example.org/photo.jpg> a foaf:Image. (9)

It is also the precondition of photo upload (Listing 3).
Consequently, using modus ponens (8), we can derive the
postcondition of photo upload. Yet it does not stop there.
The statements of the postcondition can also trigger
other inferences. In the end, the result chain is:

– we can upload the photo, upon which it will receive
an identifier;

@prefix : <http://restdesc.no.de/ontology#>.
@prefix http: <http://www.w3.org/2006/http#>.
@prefix tmpl: <http://purl.org/restdesc/http-template#>.

{
?photo :photoId ?id.

}
=>
{
_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId);
http:resp [tmpl:represents ?photo].

}.

Listing 1: RESTdesc description of photo retrieval

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@forAll :photo, :id. # ∀ photo, id :
@forSome :request, :response.
{
:photo :photoId :id. # photoId(photo,id)

}
log:implies # ⇒ ∃ request,r : resp(request,r)
{ # ∧ represents(r,photo) [. . .]

:request [. . .] http:resp :response.
:response tmpl:represents :photo.

}.

Listing 2: Listing 1 with explicit quantifiers

@prefix foaf: <http://xmlns.com/foaf/>.

{
?photo a foaf:Image.

}
=>
{
_:request http:methodName "POST";

http:requestURI "/photos";
http:body [tmpl:formData ("photo=" ?photo)];
http:resp [tmpl:location ("/photos/" ?photoId)].

?photo :photoId ?photoId.
}.

Listing 3: RESTdesc description of photo upload

{
?photo :photoId ?photoId.

}
=>
{
_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId "/faces");
http:resp [tmpl:representsMultiple ?region].

?region foaf:depicts [a foaf:Person];
:regionId _:regionId;
:belongsTo ?photo.

}.

Listing 4: RESTdesc description of face detection

{
_:region foaf:depicts ?person;

:regionId ?regionId;
:belongsTo [:photoId ?photoId].

}
=>
{
_:request http:methodName "GET";

tmpl:requestURI
("/photos/" ?photoId "/people/" ?regionId);

http:resp [tmpl:represents ?person].

?person foaf:name _:personName.
}.

Listing 5: RESTdesc description of face recognition

7

– we can use this identifier to receive the photo;
– we can use this identifier to detect faces within it;
– we can then ask the server to recognize these faces.

In addition to what steps we can take, the inference
process also tells us how to take this steps by listing the
concrete HTTP requests.

These and other examples can be verified online using
the EYE Semantic Web reasoner [12] on the interactive
RESTdesc test website2.

An even more interesting approach is to add a goal,
in addition to a —starting point (9). If we indeed want
to know who is depicted in the photograph, our query
might be:

<http://example.org/photo.jpg> foaf:depicts ?person.

The proof of the reasoner for this query forms a list of
ordered steps to obtain the desired results, again with
detailed instructions on how to execute these steps. This
differs from the previous output, which was just an un-
ordered list of possible actions. Here, the result is an
actual execution plan, instructing to first upload the
photo, then ask for detected faces, and finally find out
the associated persons [37].

It is apparent that RESTdesc descriptions provide a
powerful and instant way to deal with automated inter-
pretation and composition of different Web services.

4.5 Compatibility and automatic translation

One outstanding property of RESTdesc is that it, cap-
turing the complete functionality of the service, can be
converted into a multitude of other formats. After all,
the functionality description, combined with invocation
information, contains the maximal superset of what needs
to be known to machines about a service.

Is it important to realize that RESTdesc starts from
RESTful principles from which the invocation aspects fol-
low. For instance, the fact that GET and HEAD operations
are safe and idempotent, whereas POST is not, conveys
necessary information to generate certain descriptions.

One relevant example is the translation to the Compo-
sition of Identifier Names vocabulary (CoIN, [28]). The
CoIN vocabulary “defines a set of classes and properties
used to describe what properties of a resource constitute
components of a URI”. This information is present in the
RESTdesc service descriptions, due to its use of URI tem-
plates which are bound to concrete variables. Automatic
translation can be seen in action on our website2.

It is also possible to generate WSDL, WADL, or
OWL-S descriptions, as all the information—besides
human-targeted elements such as labels and textual
information—are readily available. In fact, human-centric
textual descriptions could also be generated based on
RESTdesc and ontological information. Listing 1 could
translate to “given an identifier, retrieves a representation
of the photograph with that identifier.”

By means of content negotiation, a description format
understood by the client can be returned upon request.

5 RESTdesc Service Discovery

In this section we will show with the help of the concrete
example of a face detection and recognition API intro-
duced before how starting from a single URI one can
follow one’s nose to explore the capabilities of an API.

5.1 On Web Service Discovery

Web Service discovery can be seen as the process of lo-
cating a suitable Web service for a given task. Typically
in classic WS-* architectures there are several options for
this process, which can involve Web services registering
themselves with a central registry (as in Section 2.7 with
UDDI), or Web services exposing their capabilities using
the Web Service Description Language (WSDL, [9, 10]).
On a related note, the Web Services Inspection Lan-
guage (WSIL, [3]) has been proposed to list groups of
Web services and their endpoints. When we say Web
service discovery, we currently limit ourselves to enable
discovery of Web services by following one’s nose from
a given start URI by resolving links and making sense
of Notation3 service invocation descriptions. However,
RESTdesc is a very powerful concept, as given just one
starting URI, the full reasoning chain of available Web
services is enabled, not constrained to Web services on
the same domain.

5.2 Learning About one’s OPTIONS

An execution plan can be dynamically created by a user
agent that is given a concrete task like “identify all per-
sons in a certain photo” (see Subsection 4.4). The user
agent first starts to check out its options on the Web ser-
vice’s base URI /, as shown in Listing 6. From there, the
user agent discovers that there is a link of type “index”
to /photos, which in turn it checks its options on. As
can be seen in Listing 7 (edited slightly for clearness),
the user agent has indicated that it accepts responses
of type “text/n3; charset=utf-8”, and therefore is given
instructions that new items can be added to the index by
means of a POST request. Next, the user agent uploads
the photo to the server, and is notified that the photo has
been stored at the location /photos/1, as stated in the
Location header of the 201 Created-type response. The
user agent then executes an OPTIONS call to that loca-
tion in order to find out what it can do with the uploaded
photo. The response contains Notation3 instructions on
how to detect potentially contained faces in the photo by
performing a GET request to /photos/1/faces. Upon
execution of that GET call, each of the detected faces has
its own URI, for example /photos/1/faces/1, where a
cropped image region of just that face is available, as can
be derived from the Link header. In addition to that, a
different Link header reveals that the persons behind each
of the faces can be recognized by navigating to the partic-
ular person’s URI, for example /photos/1/persons/1.

/
/photos
/photos/1
/photos/1/faces
/photos/1/faces/1
/photos/1/persons/1

8

$ curl -i -H "Accept: text/n3; charset=utf-8" \\
-X OPTIONS http://restdesc.no.de

HTTP/1.1 200 OK
Link: <./>; rel=self,

<./photos>; rel=index; type=text/n3;charset=utf-8
Allow: GET, OPTIONS, HEAD

Listing 6: An OPTIONS call on an API’s base URI

$ curl -i -H "Accept: text/n3; charset=utf-8" \\
-X OPTIONS http://restdesc.no.de/photos

HTTP/1.1 200 OK
Link: <./>;

rel=index;
rel=self

Allow: GET, OPTIONS, HEAD, POST
Content-Type: text/n3; charset=utf-8

@prefix : <http://restdesc.no.de/ontology#>.
@prefix http: <http://www.w3.org/2006/http#>.
@prefix tmpl: <http://purl.org/restdesc/http-template#>.
@prefix foaf: <http://xmlns.com/foaf/>.

{
?photo a foaf:Image.

} => {
_:request http:methodName "POST";
http:requestURI "/photos";
http:body [tmpl:formData ("photo=" ?photo)];
http:resp [tmpl:location ("/photos/" ?photoId)].

?photo :photoId _:photoId. }.
}

{
?photo :photoId ?id.

} => {
_:request http:methodName "GET";
tmpl:requestURI ("/photos/" ?photoId);
http:resp [tmpl:represents ?photo].

}.

Listing 7: An OPTIONS call on a discovered index path
from an API’s base URI while accepting text/n3 responses

$ curl -i -F "photo=@./obama-gillard.jpg" \\
http://restdesc.no.de/photos

HTTP/1.1 100 Continue

HTTP/1.1 201 Created
Location: http://restdesc.no.de/photos/1
Content-Type: text/html

Your photo was uploaded:

http://restdesc.no.de/photos/1

Listing 8: A POST call in order to upload a photo discovered
via the Notation3 data from the previous request

6 Adapting to change and errors

In this section, we describe how our approach reacts to
change and errors in a forgiving and tolerant way. We
investigate how RESTdesc descriptions ensure clients can
adapt to long-term changes and possible errors.

6.1 Focus on runtime decisions

RESTdesc is designed from the start to be consumed at
runtime and to make decisions only at the moment this
becomes necessary. We want to mimic the flexibility of
human beings browsing the Web, who follow hyperlinks

$ curl -i -H "Accept: */*" -X OPTIONS \\
http://restdesc.no.de/photos/1

HTTP/1.1 200 OK
Content-Type: image/jpg
Allow: GET, OPTIONS, HEAD
Link: <http://restdesc.no.de/restdesc/photos/1/faces>;

rel="http://dbpedia.org/resource/Face_detection";
title="contained faces";
type="text/n3"

{
?photo :photoId ?photoId.

} => {
_:request http:methodName "GET";
tmpl:requestURI ("/photos/" ?photoId "/faces");
http:resp [tmpl:representsMultiple ?region].

?region foaf:depicts [a foaf:Person];
:regionId _:regionId;
:belongsTo ?photo.

].

{
_:region foaf:depicts ?person;
:regionId ?regionId;
:belongsTo [:photoId ?photoId].

}
=>
{
_:request http:methodName "GET";
tmpl:requestURI

("/photos/" ?photoId "/people/" ?regionId);
http:resp [tmpl:represents ?person].

?person foaf:name _:personName.
}.

Listing 9: An OPTIONS call to find out about one’s options
with a concrete photo

to achieve a predefined goal—which is perhaps adjusted
along the way. Mostly, humans have a high-level plan,
that is refined as each step becomes more and more
concrete, and if necessary, steps can be taken back.

6.2 Fluent change coping

This focus on the runtime aspect makes RESTdesc well
adapted to changes. The key to that functionality is
offered by the operational semantics of the integrated pre-
and postconditions: in order for a RESTdesc description
to apply, its preconditions must be satisfied. This is
inherently different from static descriptions, where the
description can be interpreted separately. This adaptive
behavior does not only work for small interface changes,
even more complex situations can be handled gracefully.

We will briefly consider some examples. For instance,
suppose the server changes its URI structure (which is
similar to the change of data format presented in 2.1).
This does not pose a problem, since the URI templating
mechanism fills out the parameters dynamically. A more
subtle change, for instance, if the server only wants to
accept images with maximum dimensions 1000× 1000,
can be handled on two levels. The preconditions will state
this requirement on the image, and should the client at-
tempt a larger image, the server will return an error code.
More interestingly, the server can also return hyperlinks
to image resizing services, which can help the client to
work out a solution on its own. Even changes that affect
the process structure can be handled transparently: for

9

example, if the face recognition algorithm needs grayscale
input images, the preconditions can list this requirement
and the server could return service links in a similar way.

The central idea is that the client uses descriptions in
a dynamic way: “Given a certain input, how can the ser-
vice descriptions reach my predefined goal?”. The server
furthermore aims to support the client by providing in-
formation on how to reach subsequent steps. This vision
differs completely from the traditional static approach,
which cannot deal with changing contexts.

6.3 Adaptive error handling

WSDL and OWL-S provided very detailed ways to specify
error conditions and faults. This does not correspond
to the human strategy when browsing the Web: we just
try, and if something does not work out as expected, we
continue, possibly aided by hyperlinks on last visited
pages. The underlying rationale is simple: if we had to
anticipate every possible error (page not found, irrelevant
information, network failure, . . .), we might as well give
up before we start. Consequently, our approach is to
handle errors dynamically as they arise7, guided by the
service itself where applicable.

An important benefit of this pragmatic error handling
is that all causes can be dealt with in an uniform man-
ner. Clients assume services will handle their request as
described. If an exception or error should occur, it is
detected and remedied, irrespective of whether it could
have been expected. For example, a face detection request
can fail for numerous reasons: the image does not exist
or has been deleted, no faces detected in the image, the
server is unavailable or crashes, . . . The central idea is
that there is no point in anticipating foreseeable errors,
since errors can always occur. A RESTdesc description
details necessary preconditions for executing a request,
but it does not strive to handle exceptional situations
because it can never cover all of them.

The REST practice of correctly using HTTP status
codes forms the corner stone of error detection. They
can precisely identify the source of the problem (client,
request, or server), its temporal scope (temporary or per-
manent), and offer additional information (even in case
of success). What we suggest is that the service should
supply hyperlinks that can help the client to remedy
the problem, similar to service discovery in Section 5.
For example, depending on the error, the server could
list the photo upload API (image does not exist), or
an alternative API with a different face detection algo-
rithm (no faces detected), or even another server (server
unavailable) in its responses.

7 This approach works well with actions that do not involve
commitment, i.e. information exchange, which we primarily
focus on. Data fetching and even state-changing actions,
such as image upload, are thus perfectly possible. In case of
irreversible actions with binding consequences (e.g., reser-
vations), special care might be necessary. But then again,
not all errors can be foreseen, which renders this topic
inherently difficult and not generally solvable.

7 Conclusion and Future Work

In this paper, we have shown a proposal for a Web service
description and interaction approach for automatic Web
service discovery and execution called RESTdesc. Our ap-
proach builds on top of RESTful principles and consists
of a semantic mark-up model, offering a formal descrip-
tion of a service’s functionality, with extensive flexibility,
and an HTTP-based discovery method of services, both
within a domain of related services, and also beyond. It
is to be noted that in order for our approach to work,
obeying to REST principles is essential for the APIs that
RESTdesc should be applied to. We have demonstrated
the feasibility and the pragmatism of our proposal with a
concrete implementation. In addition to that, and unlike
OWL-S, our approach is integrated in the normal Web
service data flow.

Future work will be to prove the applicability of the
approach to a broad family of existing RESTful Web
services. We are also planning to investigate ways to link
to external services that not necessarily follow our ap-
proach, including multi-domain-spanning Web services.
In addition to that, we want to perform an in-depth
study of compatibility and exchangeability with other
standards and practices (namely with WSDL, WADL,
and OWL-S). Currently we are at the very beginnings of
our work towards allowing for complex automated exe-
cution plan creation including the creation of automated
clients against RESTdesc-described services. With this
paper we have laid a humble foundation stone for seman-
tic Web service description. Future versions of RESTdesc
will most probably encourage the decoupled use of the
method, meaning that instead of relying on URI tem-
plates (which allow for a certain degree of freedom, but
still introduce a form of tight coupling) we shift the
URI descriptions into the Link headers, and only specify
the relation of those Link headers to the result in the
server response.

References

1. Alarcón, R., Wilde, E.: Linking Data from RESTful Ser-
vices. Proceedings of the 3rd International Workshop on
Linked Data on the Web (2010)

2. Atrey, P., Hossain, M., El Saddik, A., S Kankanhalli, M.:
Multimodal fusion for multimedia analysis: a survey. Mul-
timedia Systems (2010), http://www.springerlink.com/

index/E31M71152774R630.pdf

3. Ballinger, K., Brittenham, P., Malhotra, A.,
Nagy, W.A., Pharies, S.: Web Services Inspec-
tion Language (WS-Inspection) 1.0 , http://www-
106.ibm.com/developerworks/webservices/library/ws-
wsilspec.html (2001), http://www-106.ibm.com/

developerworks/webservices/library/ws-wsilspec.html

4. Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey,
M.J., Feygin, D., Hately, A., Kochman, R., Macias, P.,
Novotny, M., Paolucci, M., von Riegen, C., Rogers, T.,
Sycara, K., Wenzel, P., Wu, Z.: UDDI Version 3.0.2
(Oct 2004), http://www.oasis-open.org/committees/

uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

http://www.springerlink.com/index/E31M71152774R630.pdf
http://www.springerlink.com/index/E31M71152774R630.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

10

5. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable
RDF syntax. W3C Team Submission (Mar 2011), http:

//www.w3.org/TeamSubmission/n3/

6. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y.,
Hendler, J.: N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

7. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic
Web. Scientific American 284(5), 34 (2001)

8. Brickley, D., Miller, L.: FOAF Vocabulary Specifica-
tion 0.97. Namespace document (January 2010), http:

//xmlns.com/foaf/spec/20100101.html

9. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.:
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation (Jun
2007), http://xml.coverpages.org/wsdl20000929.html

10. Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S.: Web Services Description Language (WSDL) 1.0 (Sep
2000), http://xml.coverpages.org/wsdl20000929.html

11. Clinton, D.: OpenSearch Specification 1.1 Draft 3
(2007), http://www.opensearch.org/Specifications/

OpenSearch/1.1

12. De Roo, J.: Euler proof mechanism, http://eulersharp.

sourceforge.net/

13. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masin-
ter, L., Leach, P., Berners-Lee, T.: Hypertext Transfer
Protocol – HTTP/1.1. Request for Comments: 2616 (Jun
1999), http://www.ietf.org/rfc/rfc2616.txt

14. Fielding, R.T., Taylor, R.N.: Principled design of the
modern Web architecture. ACM Transactions on Internet
Technology 2(2), 115–150 (May 2002), http://dx.doi.org/

10.1145/514183.514185

15. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S.,
Mendelsohn, N., Beech, D., Maloney, M.: W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Struc-
tures. World Wide Web Consortium, Working Draft WD-
xmlschema11-1-20080620 (June 2008)

16. Generereth, M.R.: Knowledge interchange format. Draft
Proposed American National Standard, http://logic.

stanford.edu/kif/dpans.html

17. Gregorio, J., Fielding, R., Hadley, M., Notthingham, M.:
URI Template (Mar 2010), http://tools.ietf.org/html/

draft-gregorio-uritemplate-04

18. Gregorio, J.: Do we need WADL? (Jun 2007), http://

bitworking.org/news/193/Do-we-need-WADL

19. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J.:
SOAP Version 1.2 Part 1: Messaging Framework (Sec-
ond Edition). W3C Recommendation (Apr 2007), http://

www.w3.org/TR/2007/REC-soap12-part1-20070427/

20. Hadley, M.: Web Application Description Language. W3C
Member Submission (Aug 2009), http://www.w3.org/

Submission/wadl/

21. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.:
Swrl: A Semantic Web rule language combining OWL and
RuleML. W3C Member Submission (May 2004), http:

//www.w3.org/Submission/SWRL/

22. Klyne, G., Carrol, J.J.: Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recom-
mendation (Feb 2004), http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/

23. Koch, J., Velasco, C.A.: HTTP Vocabulary in RDF 1.0.
W3C Working Draft (Oct 2009), http://www.w3.org/

TR/HTTP-in-RDF10/

24. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL:
Semantic Annotations for WSDL and XML Schema.
IEEE Internet Computing 11, 60–67 (2007)

25. Krill, P.: Microsoft, IBM, SAP discon-
tinue UDDI registry effort. InfoWorld,
http://www.infoworld.com/d/architecture/

microsoft-ibm-sap-discontinue-uddi-registry-effort-777

26. Krummenacher, R., Norton, B., Marte, A.: Towards
Linked Open Services and Processes. Proceedings of
FIS’2010 pp. 68–77 (Jul 2010)

27. Lafon, Y.: Team Comment on the ”Web Application
Description Language” Submission (Oct 2009), http://

www.w3.org/Submission/2009/03/Comment

28. Lindström, N.: The CoIN Vocabulary (May 2011),
http://court.googlecode.com/hg/resources/docs/coin/

spec.html

29. Martin, D., Burstein, M., Hobbs, J., Lassila, O.: OWL-S:
Semantic Markup for Web Services. W3C Member Sub-
mission (Nov 2004), http://www.w3.org/Submission/

OWL-S/

30. McDermott, D.: DRS: A Set of Conventions for Repre-
senting Logical Languages in RDF (Jan 2004), http://

cs-www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf

31. Mcdermott, D., Dou, D.: Representing disjunction and
quantifiers in RDF. In: In Proceedings of International
Semantic Web Conference 2002. pp. 250–263 (2002)

32. McGuinness, D.L., van Harmelen, F.: OWL Web
Ontology Language Overview. W3C Recommen-
dation (Feb 2004), http://www.w3.org/TR/2004/

REC-owl-features-20040210/

33. Minar, N.: Why SOAP sucks (Nov 2006), http://www.

somebits.com/weblog/tech/bad/whySoapSucks.html

34. Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen,
C.M., Thompson, H.S.: W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes. World Wide
Web Consortium, Working Draft WD-xmlschema11-2-
20080620 (June 2008)

35. Steiner, T., Algermissen, J.: Fulfilling the Hypermedia
Constraint via HTTP OPTIONS, The HTTP Vocabulary
In RDF, And Link Headers. Proceedings of the Second
International Workshop on RESTful design (Mar 2011)

36. Verborgh, R., Van Deursen, D., De Roo, J., Mannens, E.,
Van de Walle, R.: SPARQL Endpoints as Front-end for
Multimedia Processing Algorithms. Proceedings of the
Fourth International Workshop on Service Matchmaking
and Resource Retrieval in the Semantic Web (Nov 2010)

37. Verborgh, R., Van Deursen, D., Mannens, E., Poppe, C.,
Van de Walle, R.: Enabling context-aware multimedia
annotation by a novel generic semantic problem-solving
platform. Multimedia Tools and Applications special issue
on Multimedia and Semantic Technologies for Future
Computing Environments (2011)

http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://xmlns.com/foaf/spec/20100101.html
http://xmlns.com/foaf/spec/20100101.html
http://xml.coverpages.org/wsdl20000929.html
http://xml.coverpages.org/wsdl20000929.html
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.ietf.org/rfc/rfc2616.txt
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1145/514183.514185
http://logic.stanford.edu/kif/dpans.html
http://logic.stanford.edu/kif/dpans.html
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://bitworking.org/news/193/Do-we-need-WADL
http://bitworking.org/news/193/Do-we-need-WADL
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/ TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.infoworld.com/d/architecture/microsoft-ibm-sap-discontinue-uddi-registry-effort-777
http://www.infoworld.com/d/architecture/microsoft-ibm-sap-discontinue-uddi-registry-effort-777
http://www.w3.org/Submission/2009/03/Comment
http://www.w3.org/Submission/2009/03/Comment
http://court.googlecode.com/hg/resources/docs/coin/spec.html
http://court.googlecode.com/hg/resources/docs/coin/spec.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://cs-www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf
http://cs-www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.somebits.com/weblog/tech/bad/whySoapSucks.html
http://www.somebits.com/weblog/tech/bad/whySoapSucks.html

	Description and Interaction of RESTful Services for Automatic Discovery and Execution

