
Efficient Runtime Service Discovery and

Consumption with Hyperlinked RESTdesc

Ruben Verborgh∗, Thomas Steiner†, Davy Van Deursen∗, Rik Van de Walle∗, Joaquim Gabarró Vallés†

∗Ghent University – IBBT, ELIS – Multimedia Lab, B-9050 Ledeberg-Ghent, Belgium

Email: {ruben.verborgh, davy.vandeursen, rik.vandewalle}@ugent.be
†Universitat Politècnica de Catalunya, Department LSI, 08034 Barcelona, Spain

Email: {tsteiner, gabarro}@lsi.upc.edu

Abstract—Hyperlinks and forms let humans navigate with
ease through websites they have never seen before. In contrast,
automated agents can only perform preprogrammed actions on
Web services, reducing their generality and restricting their
usefulness to a specialized domain. Many of the employed services
call themselves RESTful, although they neglect the hypermedia
constraint as defined by Roy T. Fielding, stating that the
application state should be driven by hypertext. This lack of
link usage on the Web of services severely limits agents in what
they can do, while connectedness forms a primary feature of the
human Web. An urgent need for more intelligent agents becomes
apparent, and in this paper, we demonstrate how the conjunction
of functional service descriptions and hypermedia links leads to
advanced, interactive agent behavior. We propose a new mode
for our previously introduced semantic service description format
RESTdesc, providing the mechanisms for agents to consume Web
services based on links, similar to human browsing strategies. We
illustrate the potential of these descriptions by a use case that
shows the enhanced capabilities they offer to automated agents,
and explain how this is vital for the future Web.

Index Terms—automated agents; hypermedia links, Semantic
Web; service consumption; service discovery

I. INTRODUCTION

Ironically enough, even the end of the Internet1 has an exit:

by means of a form that allows users to refer people to

the page, they can leave it. Hyperlinks and forms are the

backbone of the way how we navigate the Web. With the REST

architectural style, this backbone can also be used for Web

services, sometimes synonymously referred to as Web APIs.

Unfortunately, many of today’s so-called RESTful APIs are

little more than just HTTP interfaces because they omit these

link relationships in their responses, neglecting the hypermedia

constraint as defined by Roy T. Fielding [1]. The absence

of such links forces clients to be aware of how the server

functions before they can use it, limiting their horizon to what

they already know. In contrast, the omnipresence of hyperlinks

and forms on the human Web enables us to easily find out

where to go next, discovering on-the-fly which of the possible

next steps might be the most promising one. Striving for

machines to reach the same level of autonomy has been an

early idea of Semantic Web and service architects.

Although significant progress was made in different areas,

the vision [2] of automated agents consuming Web services

1Located at http://www.endoftheinternet.com/.

has not been fulfilled in the first decade of the Semantic Web.

Leading researchers in this area, such as Jim Hendler [3],

remark that autonomous agents are still missing, while the

infrastructure for intelligent systems is now in place. However,

the Achilles’ heels of Semantic Web services are service

descriptions, as they form the anchor points where automated

discovery and consumption start. Several description formats

exist, each with specific benefits and—often more cited—

drawbacks, but there has never been broad acceptance in the

field of service discovery and consumption.

In general, description formats provide detailed character-

ization of input and output parameters, but the functionality

of the Web service is only vaguely captured or oftentimes

completely missing, forcing us to rely on implicit semantics.

This can be explained by the industry’s initial concern, which

was to provide descriptions that could integrate Web services

into traditional software platforms. In practice, this meant

that humans selected a specific service, against which the

application was compiled. Two obvious problems appear:

i) choosing the right service requires manual intervention,

severely limiting the application’s possibilities, and ii) if

the service description changes, the application has to be

recompiled—and possibly altered. We argue that a description

focusing on functionality provides a highly efficient way to

solve these two problems, and is subsequently the best choice

for runtime service discovery and consumption.

This paper takes Web services to the next level and allows

agents to act without a fully-defined plan upfront. We explain

how hypermedia links can be used in conjunction with ser-

vice descriptions, enabling agents to discover their options

at runtime. We aim to provide possibilities similar to those

of humans browsing the Web: given a starting point, people

interpret documents and navigate intelligently through pages

via hyperlinks, surfing across information as it arrives, fol-

lowing their noses to find what they need. Agents that possess

similar capabilities become versatile Web consumers, capable

of autonomously finding more information and performing

more advanced tasks, without predefined knowledge about a

specific server and its modalities.

The remainder of this paper is structured as follows: Sec-

tion II provides an introduction to the description format, its

syntax and usage. We continue this paper with related work in

Section III. Section IV introduces hypermedia links in service

373978-1-4577-1127-5/11/$26.00 c©2011 IEEE

@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix http: <http://www.w3.org/2006/http#>.

@prefix tmpl: <http://purl.org/restdesc/http-template#>.

{

?book dbpedia:isbn ?isbn.

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/books/" ?isbn);

http:resp [tmpl:represents ?book].

?book dbpedia:title ?title.

}.

Listing 1. RESTdesc description of a book title service

_:request http:methodName "GET";

http:requestURI "/books/1-57322-245-3";

http:resp [tmpl:represents _:mybook].

_:mybook dbpedia:title _:title1.

Listing 2. Combining the book service description with an ISBN code

descriptions, followed by the provisioning of agents that can

autonomously consume such services in Section V. Section VI

concludes the paper and outlines future work.

II. INTRODUCTION TO RESTDESC

The description method we use is RESTdesc [4], an RDF-

based [5] notation focused on the specific capabilities of a

service, instead of its parameters and modalities2. The goals

for RESTdesc are i) to have a functionality-centered and

formally defined service description ii) using Semantic Web

technologies iii) that emphasizes simplicity and elegance. The

theoretical foundations have been presented previously, so we

will limit ourselves to a brief introduction. RESTdesc descrip-

tions are expressed in Notation3 (N3, [6]), an RDF superset

that adds support for graphs and quantification, enabling con-

cise and practical descriptions without resorting to additional

meta-level constructs for semantics and functionality. As a

result, RESTdesc descriptions do not require explicit mentions

of services, inputs, nor outputs to express functionality.

Let us consider the example of a service that returns a

book title based on its ISBN code. Listing 1 shows a possible

RESTdesc description. The identifiers prefixed by a question

mark ? are universally quantified variables, the braces {}

enclose graphs and the arrow => represents implication. A

literal English translation could be “if you know a book’s

ISBN code, then an HTTP request to /books/{ISBN} will

return a representation of this book, including its title”. This

is the denotational, logic meaning of the description.

In addition, Notation3 entails also an operational seman-

tics, called N3Logic [7]. This enables agents to execute the

description as a rule. In this concrete example, if the agent

knows the ISBN code of a book:

_:mybook dbpedia:isbn "1-57322-245-3". ,

it can combine this statement and the description via a reasoner

and obtain the knowledge displayed in Listing 2 (namespace

2Online documentation is available at http://restdesc.org/.

declarations omitted for brevity). The reasoner has also turned

the URI template into a concrete URL, because all elements

were available. The agent can subsequently perform the HTTP

request and use the result to complete its knowledge base:

GET /books/1-57322-245-3 HTTP/1.1

This shows how RESTdesc functions and what it is capable of.

Several aspects of RESTdesc descriptions are noteworthy:

● They do not introduce any new terminology, but reuse

existing concepts such as N3 and URI templates [8]. As a

result, the service’s functionality is described directly, i.e.,

it does not require a meta-level description for parameters,

settings, and the like.

● There is no need to specify types, since they can be

inferred from ontological knowledge, e.g., in the concrete

case from the example before, from the domain and range

of dbpedia:isbn and dbpedia:title.

● Descriptions are self-contained and self-explaining, not

requiring additional semantics apart from those delivered

by the N3 language.

● They immediately describe the HTTP request required to

execute the operation.

While this last point is a benefit in terms of simplicity—

which is why we introduced it in the first place—it also

couples functional description and execution. What if a client

cannot determine beforehand which request and URI it will

need? This paper tackles exactly this point and presents an

enhanced mode of RESTdesc based on hypermedia links. That

way, clients do not need to know in advance what HTTP

requests they should issue, but can determine them just in time,

adapting to information and links in server responses. This

connectedness of services allows clients to be programmed

in a generic way without relying on implementation details

of servers [9, p. 223–227], making them substantially more

powerful and versatile.

III. RELATED WORK

A. RESTful Web Services

As the name indicates, RESTdesc descriptions assume

the underlying service has a RESTful architectural style, as

outlined by Fielding and Taylor [1], referred to as REST

API. Services that follow these principles employ a resource-

oriented model where each resource is uniquely identified by a

URI. All operations on these resources use the standard HTTP

methods (GET, POST, PUT . . .) with their respective correct

meaning as originally defined in the HTTP protocol [10]. This

contrasts with other techniques and applications that either use

HTTP as an envelope protocol (e.g., SOAP [11]) or incorrectly

apply HTTP methods.

The simplicity and uniformity of the HTTP architecture

makes REST APIs particularly good candidates for automated

consumption, in addition to manual browsing. The well-

defined properties of the standard HTTP methods, such as

(un-)safeness and (non-)idempotence, enable to reason about

the results and side-effects of actions.

374 2011 7th International Conference on Next Generation Web Services Practices

Note, however, that adhering to the correct RESTful use of

the HTTP protocol is not a hard requirement for RESTdesc.

Rather, creating descriptions for services that do otherwise will

involve a larger amount of effort.

B. Universal Description, Discovery, and Integration

Universal Description, Discovery, and Integration (UDDI,

[12]) was an early attempt at making both public and private

Web services available by acting as a service broker. UDDI

provides constructs at organizational, service-classifying, and

technical level, but never widely found adaption. Its main

criticisms are that it does not support truly automated service

matching [13], and that it endorses tight coupling, making

change problematic [14]. Furthermore, it was designed with

the concepts of one service type in mind (SOAP), so it cannot

function in a heterogenous service environment.

C. Traditional Service Descriptions

In the early years, service descriptions and the Web Service

Description Language (WSDL, [15]) were virtually synonyms,

or at least treated that way. However, it has now become

apparent that WSDL is not the appropriate format to deal

with today’s service challenges on the Web. While in theory,

version 2.0 could be used to describe REST APIs [16], WSDL

has mainly been applied for SOAP services and therefore

remains associated with it. Also, it suffers from the same

verbosity as version 1.0 and does not contribute to an un-

derstanding of the functionality of the service, focusing on the

technical and implementational aspects in a non-semantic way.

The Web Application Description Language (WADL, [17])

was designed from the ground up to describe RESTful ser-

vices. Yet, it also neglects the functional aspect, disabling

runtime service discovery, in contradiction to the needs of parts

of the REST community [18]. For example, it is insufficient

to describe a book author lookup service as “a service with a

book’s ISBN number as input and a person name as output”.

Does this person represent a reader of the book, the editor, or

maybe even the subject? A human has to verify this in advance

and hardwire the service where an author lookup is required.

D. Semantic Service Descriptions

A first step towards semantics was offered by Semantic An-

notations for WSDL (SAWSDL, [19]). Later on, an adaptation

specifically for RESTful services was proposed [20]. However,

SAWSDL is only concerned with giving a semantic definition

to the input and output parameters of services, rather than

connecting them in a functional way. Being an extension of

WSDL, it inherited all other drawbacks.

Meanwhile, the Semantic Web was bridging the gap from

the other side and proposed formats such as OWL [21]

for Services (OWL-S, [22]), an ontology for modeling Web

services. While OWL-S still focuses somewhat on input and

output parameters (albeit with semantics), it allows to describe

functional relations using a variety of expression languages

(SWRL, DRS, and KIF by default, others are possible).

Unfortunately, these expressions are unintegrated and form

a separate layer which – unless interpreted explicitly by a

supported toolset – is ignored.

The Web Service Modeling Ontology (WSMO, [23]) is an

alternative to OWL-S. Although they share the same goals,

substantial differences between both approaches exist [24].

The most relevant difference for our purpose is the logical ex-

pressivity. While OWL-S provides the aforementioned differ-

ent expression languages, a drawback from the interoperability

viewpoint, WSMO employs a single family of layered logic

languages [25]. However, when expressed in RDF syntax,

WSMO expressions become similarly unintegrated and hence

not self-descriptive. The same holds for WSMO-Lite [26],

which extends SAWSDL with conditions and effects.

IV. RESTDESC WITH HYPERMEDIA LINKS

A. About Hypermedia Links

One of the fundamental properties of REST is the so-called

hypermedia constraint, which basically can be summarized

as the constraint that each server response should contain

the possible next steps the client can take, since the client

maintains the application state. As Fielding points out, HTTP

APIs must be driven by hypertext, which is "the simultane-

ous presentation of information and controls such that the

information becomes the affordance through which the user

(or automaton) obtains choices and selects actions" [27].

He clarifies, however, that hypertext and hypermedia links

go beyond specific technologies such as HTML. Concretely,

this means that a service can provide links in a machine-

understandable format for agents to follow.

One interesting possibility is to put hypermedia links in the

HTTP response’s Link headers, following the proposed stan-

dard Web Linking [28] by Mark Nottingham. It is equivalent

to the link element in HTML, allowing to specify various

properties, including the relationship type of the link. The

added value of Link headers is that they allow hypermedia

links within other content types such as text, image, or audio.

For example, the book resource described in Listing 1 might

link to a page with information about the book’s authors.

When a client accepts image/* and performs an HTTP GET

of /books/1-57322-245-3, the server could return a JPEG

image of the book cover. To indicate next steps, the server can

add accompanying link headers:

Link: /authors/khosseini; rel="author"

It is apparent that the above URI cannot be determined

beforehand by the client. The flexibility of the Link header

mechanism allows the server to specify any URI, so the

agent does not need to know how to construct it. While

humans can now decide whether or not to follow the link, the

author relation does not convey meaningful information for

automated decision support. In order to provide semantics for

non-human agents as well, the server could choose to return

an ontology property instead:

Link: /authors/khosseini;↩

rel="http://dbpedia.org/ontology/author"

This relationship can have a meaning to the client, who can

now employ it for automated reasoning and decision making.

2011 7th International Conference on Next Generation Web Services Practices 375

{

?book dbpedia:isbn ?isbn.

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/books/" ?isbn "/authors");

http:resp [tmpl:representsMultiple ?author].

?book dbpedia:author ?author.

}.

Listing 3. Coupled RESTdesc description for book authors

B. Incorporating Links in RESTdesc Descriptions

The initial RESTdesc document already suggests including

Link headers into the response. It does however not actively

use them, because all information required to construct hy-

perlinks is contained in the description itself—limiting its

application to cases where construction in advance is possible.

The fact that RESTdesc is a combination of Notation3 and

HTTP OPTIONS allows its extension with new concepts such

as support for hypermedia links to RESTdesc.

As an example, Listing 3 shows how the functionality of the

authors resource can be expressed in “traditional” RESTdesc.

The descriptions tell us how to take the ISBN code of a book

and construct the URI to retrieve the authors. In contrast, the

linked RESTdesc description in Listing 4 does not need any

properties to construct the URL.

At first sight, it seems unclear why Listing 4 contains a

full description, since it appears to be redundant and at the

same time lacking necessary information. Redundant, because

it seems to specify only information already present in the

ontology (e.g., we already know that books can have an

author). Lacking necessary information, because there is no

explicit mention of an HTTP request as in Listing 3. However,

Listing 4 does contain all important information without

redundancy, as we explain below.

The key to understanding this description is its operational

semantics. It does not redundantly repeat the ontological

assertion that books have an author property. Rather, the

description needs to be interpreted as "if you know a book,

than you can also know its author"3. This statement is true,

because the service itself is able to fulfill the conclusion. The

client can use the operational semantics of the description as

a rule in a reasoning process. When it comes to executing this

rule, it should get the results from the service.

This brings us to the second aspect: how to construct an

HTTP request from the description. It seems that the necessary

information is missing, while it is actually implied. According

to the Linked Data principles [29], RDF URIs need to be

dereferencable, which means that an HTTP GET request to

them should return useful information about the concept they

identify. Since the server supplies author URIs, it can choose a

3The server explicitly states which data it makes available. In Listing 4,
the server also exposes subject and publisher information, but not editor or
illustrator properties, although these latter two are also part of the ontology.

{

?book a dbpedia:Book.

}

=>

{

?book dbpedia:author _:author;

dbpedia:subject _:subject;

dbpedia:publisher _:publisher;

[. . .].

}.

Listing 4. Linked RESTdesc description for book authors

{

?book dbpedia:author ?author.

}

=>

{

_:request http:methodName "GET";

http:requestURI ?author;

http:resp [tmpl:represents ?author].

}.

Listing 5. Derefencing: implied semantics of the author relationship

URI that is dereferencable. So if a client follows the principles,

it knows it should execute the following request:

GET /authors/khosseini HTTP/1.1

This dereferencing implied by Listing 4 can be specified

explicitly by the server, as shown in Listing 5. While unnec-

essary for simple GET requests, it is required to express the

functionality of other HTTP methods such as PUT and POST.

C. Functional Nature of RESTdesc

The two-part description clearly illustrates the decoupling of

addressing (supplied by the server) and functionality (supplied

by the server and interpreted by the client). As a benefit, the

descriptions remain valid when the URI scheme changes for

any reason. (Although in a good architecture, old URIs remain

accessible [30].) Moreover, functional descriptions become

possible in situations where the concrete URI is not known

in advance, which enables more powerful and flexible service

consumption.

In Listing 3, the functional aspect of RESTdesc is apparent:

the description substantiates the author relationship, connect-

ing the result of an HTTP request to the author of a book.

For Listings 4 and 5, the functional connection might be

less obvious because of the decoupling. The true functionality

however, lies in the definition of the link itself: Listing 4

describes the expected links, and each link (e.g., author) is

defined by its ontology.

The functional nature of RESTdesc becomes more explicit

if we describe the effects of non-safe HTTP methods. Listing 6

describes the submission of a book review by a user. Through

HTTP headers, the client disposes of a link to the book review

form. The N3 rule in Listing 6 explains the result of a post

action: the book will have a review with the text supplied

in the request body. Again, the functionality is expressed by

means of a link (e.g., review).

376 2011 7th International Conference on Next Generation Web Services Practices

@prefix book: <http://example.org/book#>.

{

?book book:reviewForm ?reviewForm.

}

=>

{

_:request http:methodName "POST";

http:requestURI ?reviewForm;

http:body [tmpl:formData ("text=" ?text)];

http:resp [tmpl:represents ?review].

?book book:review ?review.

?review book:reviewText ?text.

}.

Listing 6. Linked RESTdesc description for submitting a book review

D. Discovery and Composition

Currently, we require the service provider to produce the

links and descriptions. From there onwards, clients can start

discovering a server by issuing HTTP OPTIONS requests. We

could, however, imagine a more collaborative environment in

which different parties can supply and exchange links and

descriptions. This is left as future work.

For service composition, we can rely on existing N3 reason-

ers ([31], [32]), some of which are known to deliver impressive

performance [33]. To solve a composition problem, the input,

desired output characterization, and the obtained service de-

scriptions are passed to the reasoner. The reasoning process

will subsequently try to find a path from the input to the

desired output by triggering the N3 rules of the descriptions.

By examining this path, the client can determine which HTTP

requests it has to issue on the server [34].

V. PROVIDING FOR INTERACTIVE AGENTS

A. Operational Modes for RESTdesc Agents

With the coupled RESTdesc variant, there are roughly two

modes in which agents can operate:

● Explorative — the agent starts with a set of preconditions,

which recursively triggers descriptions. In the end, it

obtains a set (or finite subset) of all precalculable possible

steps it can take. Example: starting with a book’s ISBN

code, an agent finds how to get its author names, how to

look up biographies of those authors etc.

● Responsive — the agent starts with a set of preconditions

and a query (possibly issued by a user) which indicates

a desired postcondition. In most cases, this results in a

targeted subset of the explorative method for the same

precondition, but it can be helpful as a selection step or in

case the set of possible steps is infinite. Example: starting

with a book’s ISBN code, find all positive reviews.

What both of the above techniques have in common is that

the actions are determined in advance. Stated otherwise: the

agent can only plan actions whose expected results are known

beforehand.

Link headers work the other way round: possible future

actions are communicated when accessing or manipulating a

resource. This constitutes the essence of RESTful services:

book

journal

blog

authors

authors

author

articles

posts

Fig. 1. Structure of the example library Web server

the current application state is maintained by the client. The

server communicates this state in terms of possible next

steps, and it is up to the client to decide where to go. Our

introduction of linked RESTdesc thus enables a third way of

operation, the interactive mode, which is also goal-driven like

the responsive mode, but does not start with a fully determined

plan. Furthermore, agents can switch between different modes

when solving subproblems.

B. Reconciling Linked Descriptions with Planning in Advance

We will first introduce an example query for an agent.

Suppose a digital library Web server exists which contains

information about books, journals and blogs; the structure of

which is shown in Fig. 1. We are interested to find the names

of all authors that have written about the Semantic Web.

As humans, we could start this task by using the search

engine of the server for the topic “Semantic Web”. We expect

to find books, journals, and blogs in the result list. For the

books, we just take the authors. For the journals, we open the

individual articles and collect their author names. Finally, we

visit the blogs and gather the author name of each post. We

end up with the required list of names.

When making the server accessible to machines, the first

step is to express link relationships. This process is straight-

forward: books link to authors, journals link to articles, which

link to authors, etc. Furthermore, a search results page should

link to each result.

Then, we proceed by adding RESTdesc descriptions (similar

to the one of Listing 4) for books, journals, and blogs. These

descriptions convey the expectations humans have about the

website: that a book will have authors, that a journal will

have articles. Another important notion is that the result

page returns books, journals, or blogs. It is exactly this

expectation that directed us to the search function in the first

place, together with the expectation that each of the results

would lead to authors. We can translate this in an ontological

property: we state that a search result contains works, and

(using owl:oneOf) that a work can either be a book, journal,

or author. When the agent receives a concrete result link, it

is able to determine the actual type of the work and take the

appropriate action depending on this type.

C. Behavior of Reactive Agents

We will now explain how reactive agents that use linked

RESTdesc can be implemented, continuing the library query

2011 7th International Conference on Next Generation Web Services Practices 377

example. At the start, the client disposes of a list of entry

points (URIs of servers) and a query, for instance4:

@prefix db: <http://dbpedia.org/resource/>.

@prefix dbpedia: <http://dbpedia.org/ontology/>.

{

_:work dbpedia:subject db:Semantic_Web;

dbpedia:author ?author.

}

=>

{

?author a <#SemanticWebAuthor>.

}.

The agent first tries to extract as much information as possible

from this query. In this case, it can dereference the resource

dbpedia:Semantic_Web to look up more information, such

as its English label “Semantic Web”.

The next step for the agent is to discover what functionality

the servers offer. Note that the agent can actually perform this

step in advance, before it answers any query. Every known

server receives an HTTP OPTIONS / request, to which it

responds with RESTdesc descriptions and/or link headers to

other pages that can subsequently be requested with HTTP

OPTIONS. For example, the root / could link to /books, and

an HTTP OPTIONS to /books could return the description

from Listing 4. That way, the agent recursively builds up an

understanding of each resource’s capabilities.

Then, the agent composes an execution plan using a rea-

soner. The input consists of the information derived from

the query and the RESTdesc descriptions. When the query

is issued, the reasoner activates the operational semantics

of the RESTdesc descriptions, which are in fact N3 rules.

Using backwards-chaining, it determines which rules it should

activate to satisfy the query clause. This activation pattern

corresponds to the HTTP requests that should be executed

to obtain the desired result.

The execution plan actually forms a directed graph whose

edges indicate dependencies, governing the execution order.

For this example, the reasoner would devise a preliminary plan

that starts with a search, and for each result proceeds to find

the author. How this author is found, depends on the result type

(book, journal, blog). Since there are no inter-dependencies,

the result explorations can be executed in parallel.

The agent then starts consumption by issuing a search.

The server returns the search results, placing typed link

relationships either in the HTTP headers, the (HTML or RDF)

response, or both. If the result list spans multiple pages, the

agent can follow links to navigate them and continue similarly.

Each of the results is stored in a list.

Meanwhile, for every result, the agent issues an HTTP

request to look up more information. For a book, it simply

extracts the authors information. A journal requires finding the

individual articles first, which also lead to authors. Similarly,

blogs contain posts which have an author. All this information

is put in a second list.

4While expressed as a so-called Notation3 filter or transformation rule here,
the query could also be a SPARQL query or similar.

Finally, the agent goes through all authors on this list and

executes the query, delivering the requested results: a graph of

SemanticWebAuthors. Remarkable here is that the agent did

not have any preprogrammed knowledge about authors, books,

or this specific server. It is a general-purpose client that, given

RESTdesc descriptions, was able to fulfill this task similar to

how humans would browse the Web: by having a high-level

plan and following low-level hyperlinks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension to RESTdesc

that allows automated agents to react on hypermedia links.

We explained how services can be described and how these

descriptions can be linked together. Furthermore, we detailed

how agents can answer queries by following their nose, similar

to the way humans browse the Web for information.

Essential in our approach is that the client does not need

any specific knowledge about the server or even the topic.

All this information is discovered at runtime through standard

use of the HTTP protocol. The information contained in the

RESTdesc descriptions can be extended with ontological and

instance knowledge, obtained by dereferencing resource URIs.

It should be noted that this type of targeted active infor-

mation discovery is substantially different from, for example,

SPARQL querying. While the example query could indeed

be posed to a regular SPARQL endpoint, such an endpoint

is not always available, and even if it is, it lives separated

from the human Web consisting of pages. Also, the proposed

approach of link browsing works across different domains and

is far more flexible than queries, which have a rigid structure.

This is demonstrated with the blogs in the example where

the agent has to look up posts on an external website to

find the author. Furthermore, agents are not limited to pure

information retrieval. In previous work, we demonstrated how

RESTdesc agents can also execute tasks with side effects

(e.g., image uploading), something that clearly goes beyond

SPARQL functionality [4].

Concluding, we can state that RESTdesc has a strong poten-

tial in the field of service description, automatic discovery, and

consumption. Based on RESTful principles and in particular

the hypermedia constraint, it targets modern, resource-oriented

websites and focuses on the resources and their functional

relationships instead of technical properties.

Future work includes the application of RESTdesc tech-

nologies to different fields and applications, and versatile

error handling and recovery based on HTTP status codes.

We plan to provide a public implementation of the reasoning

framework for use as a black box, so intelligent agents

can employ RESTdesc composition techniques transparently.

Another interesting area is the collaboration and integration

of different services, for example using ontology matching.

Furthermore, the development of even more intelligent agents

will offer exciting challenges, such as decision optimization

when multiple alternative solution paths exist.

378 2011 7th International Conference on Next Generation Web Services Practices

ACKNOWLEDGMENT

The research activities as described in this paper were

funded by Ghent University, the Interdisciplinary Institute for

Broadband Technology (IBBT), the Institute for the Promo-

tion of Innovation by Science and Technology in Flanders

(IWT), the Fund for Scientific Research Flanders (FWO

Flanders), and the European Union. This work was partially

supported by the European Commission under Grant No.

248296 FP7 I-SEARCH project. J. Gabarró is partially sup-

ported by TIN-2007-66523 (FORMALISM), and SGR 2009-

2015 (ALBCOM).

REFERENCES

[1] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
pp. 115–150, May 2002.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34–43, May 2001.

[3] J. Hendler, “Why the Semantic Web will Never Work.” Presented
at the 7th Extended Semantic Web Conference (ESWC 2011), Crete,
Greece, May 2011. [Online]. Available: http://www.slideshare.net/
jahendler/why-the-semantic-web-will-never-work

[4] R. Verborgh, T. Steiner, D. Van Deursen, R. Van de Walle, and
J. Gabarró Vallés, “Description and Interaction of RESTful Services
for Automatic Discovery and Execution,” in Proc. FTRA International

Workshop on Advanced Future Multimedia Services, submitted.
[5] G. Klyne and J. J. Carrol. (2004, Feb.) Resource Description Framework

(RDF): Concepts and Abstract Syntax. W3C Recommendation. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[6] T. Berners-Lee and D. Connolly. (2011, Mar.) Notation3 (N3): A
readable RDF syntax. W3C Team Submission. [Online]. Available:
http://www.w3.org/TeamSubmission/n3/

[7] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler,
“N3Logic: A logical framework for the World Wide Web,” Theory and

Practice of Logic Programming, vol. 8, no. 3, pp. 249–269, 2008.
[8] J. Gregorio, R. Fielding, M. Hadley, and M. Notthingham. (2010,

Mar.) URI Template. [Online]. Available: http://tools.ietf.org/html/
draft-gregorio-uritemplate-04

[9] L. Richardson and S. Ruby, RESTful Web services. O’Reilly, 2007.
[10] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee. (1999, Jun.) Hypertext Transfer Protocol –
HTTP/1.1. [Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[11] M. Gudgin, M. Hadley, N. Mendelsohn, and J.-J. Moreau. (2007,
Apr.) SOAP Version 1.2. W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[12] T. Bellwood, S. Capell, L. Clement, J. Colgrave, M. J. Dovey, D. Feygin,
A. Hately, R. Kochman, P. Macias, M. Novotny, M. Paolucci, C. von
Riegen, T. Rogers, K. Sycara, P. Wenzel, and Z. Wu. (2004, Oct.) UDDI
Version 3.0.2. OASIS. [Online]. Available: http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

[13] D. Kourtesis and I. Paraskakis, “Combining SAWSDL, OWL-DL and
UDDI for semantically enhanced Web service discovery,” in Proceedings

of the 5th European Semantic Web Conference (ESWC 2008), ser.
Lecture Notes in Computer Science, S. Bechhofer, M. Hauswirth,
J. Hoffmann, and M. Koubarakis, Eds., vol. 5021. Springer-Verlag,
pp. 614–628.

[14] R. Levin. (2008, Oct.) Why UDDI Sucks. [Online]. Available:
http://www.cio.com/article/451966/Why_UDDI_Sucks

[15] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (2000,
Sep.) Web Services Description Language (WSDL) 1.0. [Online].
Available: http://xml.coverpages.org/wsdl20000929.html

[16] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. (2007,
Jun.) Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation. [Online]. Available:
http://xml.coverpages.org/wsdl20000929.html

[17] M. Hadley. (2009, Aug.) Web Application Description Language.
W3C Member Submission. [Online]. Available: http://www.w3.org/
Submission/wadl/

[18] J. Gregorio. (2007, Jun.) Do we need WADL? [Online]. Available:
http://bitworking.org/news/193/Do-we-need-WADL

[19] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, “Semantic Annotations
for WSDL,” IEEE Internet Computing, vol. 11, pp. 60–67, 2007.

[20] M. Maleshkova, J. Kopecký, and C. Pedrinaci, “Adapting SAWSDL
for Semantic Annotations of RESTful Services,” in Proceedings of the

Confederated International Workshops and Posters on On the Move

to Meaningful Internet Systems, ser. OTM ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 917–926.

[21] D. L. McGuinness and F. van Harmelen. (2004, Feb.) OWL
Web Ontology Language Overview. W3C Recommendation. [Online].
Available: http://www.w3.org/TR/2004/REC-owl-features-20040210/

[22] D. Martin, M. Burstein, J. Hobbs, and O. Lassila. (2004, Nov.) OWL-S:
Semantic Markup for Web Services. W3C Member Submission.
[Online]. Available: http://www.w3.org/Submission/OWL-S/

[23] H. Lausen, A. Polleres, and D. Roman. (2005, Jun.) Web Service
Modeling Ontology (WSMO). W3C Member Submission. [Online].
Available: http://www.w3.org/Submission/WSMO/

[24] R. Lara, A. Polleres, H. Lausen, D. Roman, J. de Bruijn, and D. Fensel.
(2005, Jan.) A Conceptual Comparison between WSMO and OWL-S.
[Online]. Available: http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/

[25] J. de Bruijn, D. Fensel, U. Keller, M. Kifer, H. Lausen, R. Krummen-
acher, A. Polleres, and L. Predoiu. (2005, Jun.) Web Service Modeling
Language (WSML). W3C Member Submission. [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/

[26] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite Anno-
tations for Web Services In The Semantic Web: Research and Appli-
cations,” in Proceedings of the 5th European Semantic Web Conference

(ESWC 2008), ser. Lecture Notes in Computer Science, S. Bechhofer,
M. Hauswirth, J. Hoffmann, and M. Koubarakis, Eds., vol. 5021.
Springer-Verlag, pp. 230–244.

[27] R. T. Fielding. (2008, Oct.) REST APIs must be hypertext-
driven. [Online]. Available: http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven

[28] M. Nottingham. (2010, Oct.) Web linking. [Online]. Available:
http://tools.ietf.org/html/rfc5988

[29] T. Berners-Lee. (2006) Linked Data. [Online]. Available: http:
//www.w3.org/DesignIssues/LinkedData

[30] ——. (1998) Cool URIs don’t change. [Online]. Available: http:
//www.w3.org/Provider/Style/URI

[31] ——. Cwm. [Online]. Available: http://www.w3.org/2000/10/swap/doc/
cwm.html

[32] J. De Roo. Euler proof mechanism. [Online]. Available: http:
//eulersharp.sourceforge.net/

[33] T. Osmun. Euler Eye installation, demo, and deep taxonomy
benchmark. [Online]. Available: http://ruleml.org/WellnessRules/files/
WellnessRulesN3-2009-11-10.pdf

[34] R. Verborgh, D. Van Deursen, E. Mannens, C. Poppe, and R. Van de
Walle, “Enabling context-aware multimedia annotation by a novel
generic semantic problem-solving platform,” Multimedia Tools and

Applications special issue on Multimedia and Semantic Technologies

for Future Computing Environments, 2011.

2011 7th International Conference on Next Generation Web Services Practices 379

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

