
Fixing the Web One Page at a Time,
or Actually Implementing xkcd #37

Thomas Steiner
Universitat Politècnica

de Catalunya
Department LSI

08034 Barcelona, Spain
tsteiner@lsi.upc.edu

Ruben Verborgh and Rik Van de Walle
Ghent University – IBBT, ELIS

Multimedia Lab
9050 Ghent, Belgium
{ruben.verborgh,

rik.vandewalle}@ugent.be

ABSTRACT

Figure 1: xkcd #37 – I do this constantly [3].

1. INTRODUCTION
Albeit famous exceptions exist in form of Wikis, the Web

today is still mostly a read-only experience. This leaves
the Web content consumer exposed to all sorts of typo-
graphic cruelties, such as representing the ellipsis character
’. . . ’ with three single full stops “...”, incorrect usage of a
normal space where a non-breaking space would be preferred
and even omission of the Oxford comma... While fighting
the cause, namely sloppy Web authors, is like a fight against
wind mills and certainly impossible to realize on Web scale,
fighting the symptoms is a realistic option. Using client-side
work-arounds, the Web can actually be fixed one page at
a time. In this paper, we show how using browser extensions,
part-of-speech tagging, and JavaScript DOM event listeners,
the Web can be made a better place. On a related note,
this is quite a sweet ass-abstract for a scientific paper, dude!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18–20, 2012, Lyon, France..

2. MOTIVATION

2.1 Typographic Annoyances
In this Subsection, we introduce common typographic an-

noyances with the objective of fixing them on the client-side.
Ellipsis character: Ellipsis (plural ellipses; from the An-

cient Greek: έλλειψις, élleipsis, “omission” or “falling short”)
is a series of marks that usually indicate an intentional omis-
sion of a word, sentence, or whole section from the original
text being quoted. An ellipsis can also be used to indicate
an unfinished thought or, at the end of a sentence, a trailing
off into silence (aposiopesis). The ellipsis character is com-
monly incorrectly represented by three full stops in a row
due to the lack of a designated key on standard keyboards.

Oxford comma: The Oxford comma is the comma used
immediately before a coordinating conjunction (usually “and”
or “or”, and sometimes “nor”) preceding the final item in
a list of three or more items, e.g., “Portugal, Spain, and
France”. Opinions vary among writers and editors on the
usage or avoidance of the serial comma. In American En-
glish, the serial comma is standard usage in non-journalistic
writing that follows the Chicago Manual of Style. Journal-
ists, however, usually follow the AP Stylebook, which ad-
vises against it, albeit the AP Stylebook errs here. There is
no known valid excuse for not using the Oxford comma.

Non-breaking space: In computer-based text process-
ing and digital typesetting, a non-breaking space is a variant
of the space character that prevents an automatic line break
(line wrap) at its position. Text-processing software typi-
cally assumes that an automatic line break may be inserted
anywhere a space character occurs; a non-breaking space
prevents this from happening (provided the software recog-
nizes the character). For example, if the text “a house” will
not quite fit at the end of a line, the software may insert
a line break between “a” and “house”. To avoid this undesir-
able behavior, the editor may choose to use a non-breaking
space between “a” and “house”. Due to its non-presence on
standard keyboards, the non-breaking space typically gets
represented by a normal white space character.

Appropriate dashes: Although they look similar to the
untrained eye, different kinds of dashes come with
substantial semantic differences. The em dash—being the
longest of the family—indicates a break inside the normal
sentence structure. Secondly, an en dash usually signifies
a relationship between two compounds, such as a range
(pages 1–3). Finally, a figure dash has a width similar to that
of numerals and can be used for negative amounts (−1) or



phone numbers (123−456−789). Unfortunately, the
absence of dashes on keyboards and the only subtly different
appearance makes users often unknowingly choose hy-
phens instead.

Typographic quotes and apostrophes: A final com-
mon typographic annoyance is using the wrong type of dou-
ble quotes. Keyboards only have one symbol for both a be-
ginning and an end quote, namely ". Commonly referred
to as a typewriter or programmer’s quote, it does not in-
dicate to which part of the quotation it belongs. There-
fore, “curved” quotes have been introduced as they are able
to make this distinction. A similar situation is given for
typewriter apostrophes ', which should be replaced by typo-
graphic apostrophes ’ like in “don’t”, or “Randall Munroe’s”.

2.2 Further Use Cases
In this Subsection, we present further use cases where

client-side fixing of Web pages can be considered useful.
xkcd #37: The Web comic xkcd in its episode #37 pro-

poses the mental experiment of shifting the hyphen in word
combinations of the form “[adjective]-ass [noun]” one word
to the right, so that the resulting word combination reads
“[adjective] ass-[noun]”.

Emoticons: An emoticon is a pictorial representation of
a facial expression using punctuation marks and letters, usu-
ally written to express a person’s mood. Emoticons are often
used to alert a responder to the tenor or temper of a state-
ment, and can change and improve interpretation of plain
text. Not emoticon-aware software unfortunately still has
the tendency to break lines in the middle of an emoticon :-
(. This can be avoided by the insertion of zero width no-
break spaces between the characters that form the emoticon.

3. IMPLEMENTATION
In this Section, we detail the implementation and under-

lying technologies used. As motivated before, the only way
to address typographic annoyances and advanced use cases
is on the client-side. We therefore introduce browser exten-
sions.

3.1 Browser Extensions
Browser extensions are small software programs that users

can install to enrich their browsing experience with Web
browsers. They are written using a combination of standard
Web technologies, such as HTML, JavaScript, and CSS.
There are several types of extensions; for this paper we fo-
cus on extensions based on so-called content scripts. Con-
tent scripts are JavaScript programs that run in the context
of Web pages via dynamic code injection. By using the
standard Document Object Model (DOM), they can modify
details of Web pages. In the concrete case, we based our
implementation on Google Chrome browser extensions1, al-
beit given the lightweight architecture of browser extensions
with the common building blocks JavaScript, HTML, and
CSS, porting the extension to other browsers is possible.

3.2 Part-of-Speech Tagging
Simple typographic annoyances, like triple full stops in-

stead of ellipses, can be easily fixed via regular expressions
(here using JavaScript syntax):
"Lorem ipsum...".replace(/\.\.\./g, "...");

More complicated annoyances, like omission of the Oxford
comma, not to mention xkcd #37, however, require basic

Figure 2: Comparing three different methods of obtaining
all text nodes of a Web page. The winner is TreeWalker.

text understanding in order to only be fixed where adequate,
i.e., in lists of three or more items. On a similar note, it
would harm the rules of xkcd #37 to replace “A bad-ass is
afraid, but does it anyway” by “A bad ass-is afraid, but does
it anyway”, as “is” is not a noun.

A simple definition of part-of-speech tagging (POS) is the
process of identifying words in a text as nouns, verbs, adjec-
tives, adverbs, etc., based on both their definition, as well
as their context. Our processing chain supports part-of-
speech tagging for the English language via an open source
JavaScript library called jspos2, eventually based on Eric
Brill’s POS tagger [1]. The algorithm behind the Brill tagger
assigns a tag to each word and later changes those tags using
a set of predefined rules. If a word is known, the algorithm
assigns the most frequent tag. Else, it first naively assigns
the tag “noun” to the unknown word, and then applies the
rules over and over, thereby changing incorrect tags, until
a quite high accuracy is achieved.

In order for part-of-speech tagging to work, text fragments
must be obtained from Web pages. In the following, we
discuss techniques for obtaining text from Web pages.

3.3 Obtaining Text from Web Pages
We start this Subsection with a clarification of what we

mean when we say text. We are not talking about the HTML
source code of a Web page, but about the (in modern Web
applications potentially dynamically generated) value of all
nodes of the DOM tree with a JavaScript nodeType of in-
teger 3, which corresponds to Node.TEXT_NODE. A naive
approach would be to use document.body.textContent,
however, this method neglects the context of the origin of the
text. It would no longer be clear what text fragments belong
together, e.g., to the same paragraph. Instead, per-element
text node analysis is necessary. There are three methods
for achieving this: (i) selecting all text nodes via XPath,

1http://code.google.com/chrome/extensions/
2http://code.google.com/p/jspos/

http://code.google.com/chrome/extensions/
http://code.google.com/p/jspos/


(ii) recursively walking down the DOM tree, (iii) using the
little-known DOM TreeWalker [2]. We have performed Java-
Script performance tests in order to determine the fastest
variant. The results of our tests can be seen in Figure 2.
The DOM TreeWalker clearly outperforms all other meth-
ods. New results are dynamically added to the existing re-
sults by running the tests on a dedicated jsPerf.com page3.

3.4 Listening on DOM Changes
The functionality so far only enables us to fix the static

Web, i.e., Web pages whose content remains unchanged dur-
ing a browser session. However, an important share of mod-
ern Web pages makes use of dynamically retrieved informa-
tion, for example with Ajax technologies. This means that
a single text node manipulation cycle after the initial page
has been loaded is insufficient.

Instead, we have to dynamically react on page changes by
listening to DOM events [4]. Therefore, we add listeners for
the DOMCharacterDataModified event, which occurs if the
data of a text node is changed. Additionally, we monitor the
DOMSubtreeModified event to watch when new elements are
added to the DOM. If this is the case, we also inspect their
contents for possible replacements.

Finally, the title element deserves special attention. While
it resides in the head element and thus out of the visible part
of the DOM (in the body element), browsers usually display
the title in a prominent place. For that reason, title changes
are separately monitored by the DOMSubtreeModified event.
The complete pseudocode for the implemented browser ex-
tension is given in Listing 1.

// Initial processing
for all text nodes of DOM tree as text node

processRules(text node)
end for

// DOMNodeInserted Event Listener
on DOM node inserted (new node)

for all text nodes of new node as text node
processRules(text node)

end for
end on DOM node inserted

// Helper function
function processRules(text node)

for all rules as rule
if rule is regular expression rule

apply rule to text node
else if rule is part-of-speech tagging rule

apply part-of-speech tagging to text node
apply rule to parsed text node

end if
end for

end function

Listing 1: Pseudocode for the browser extension’s logic.

3.5 Practicability Considerations
The extension works best, if the user is not even aware

of its presence—it should simply silently fix the Web. One
important aspect therefore is smoothness and speed. The
extension only gets active when everything on the page has
rendered, i.e., when the document is idle. On purpose we
chose not to highlight any changes made by the extension,
albeit implementing it would be trivial. A blacklist of HTML

Figure 3: Rules editor of the xkcd #37 extension.

tags (input, code, textarea, pre) ensures that no unde-
sired corrections are being made. Accessibility of Web pages
can be improved by a future version of the extension, e.g.,
by annotating emoticons semantically. A further use case
could be autocorrecting user input.

4. CONCLUSION
While the extension itself is ideally directly tested in

a browser, Figure 3 shows the rules editor, which allows for
new rules to be added, undesired rules to be deactivated,
or existing rules to be modified. We have published our ex-
tension on the Chrome Web Store4 and invite the reader to
test it thoroughly. As a teaser, it is a very satisfying dumb
ass-experience to read the Wikipedia page on the Oxford
comma. Fun is to be had.

5. ACKNOWLEDGMENTS
We thank Christopher Blum (@ChristopherBlum) and

Malte Ubl (@cramforce) for pointing us to DOM TreeWalker.

6. REFERENCES
[1] E. Brill. A simple rule-based part of speech tagger. In

Workshop on Speech and Natural Language, pages
112–116, 1992.

[2] Mozilla Developer Network. Document Object Model
(DOM) – document.createTreeWalker.
https://developer.mozilla.org/en/DOM/document.

createTreeWalker.

[3] R. Munroe. Hyphen. http://xkcd.com/37/.

[4] D. Schepers, J. Rossi, B. Höhrmann, P. Le Hégaret,
and T. Pixley. Document Object Model (DOM) Level 3
Events Specification. W3C Working Draft, May 2011.

3http://jsperf.com/obtain-all-text-nodes-of-a-web-page
4http://bit.ly/xkcd37

jsPerf.com
https://developer.mozilla.org/en/DOM/document.createTreeWalker
https://developer.mozilla.org/en/DOM/document.createTreeWalker
http://xkcd.com/37/
http://jsperf.com/obtain-all-text-nodes-of-a-web-page
http://bit.ly/xkcd37

	Introduction
	Motivation
	Typographic Annoyances
	Further Use Cases

	Implementation
	Browser Extensions
	Part-of-Speech Tagging
	Obtaining Text from Web Pages
	Listening on DOM Changes
	Practicability Considerations

	Conclusion
	Acknowledgments
	References

