
Fulfilling the Hypermedia Constraint Via HTTP OPTIONS,
The HTTP Vocabulary In RDF, And Link Headers

Thomas Steiner
Universitat Politécnica de Catalunya

Department LSI
08034 Barcelona, Spain
tsteiner@lsi.upc.edu

Jan Algermissen
NORD Software Consulting

Kriemhildstraße 7
22559 Hamburg

info@nordsc.com

ABSTRACT
One of the main REST design principles is the focus on me-
dia types as the core of contracts on the Web. However, not
always is the service designer free to select the most appro-
priate media type for a task, sometimes a generic media type
like application/rdf+xml (or in the worst case a binary for-
mat like image/png) with no defined or possible hypermedia
controls at all has to be chosen. With this position paper
we present a way how the hypermedia constraint of REST
can still be fulfilled using a combination of Link headers, the
OPTIONS method, and the HTTP Vocabulary in RDF.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: On-line In-
formation Services

General Terms
Experimentation

Keywords
REST, Hypermedia Constraint, HATEOAS, HTTP

1. INTRODUCTION
In one of his blog posts1 Roy T. Fielding complains about

the common practice to call HTTP-based interfaces REST
APIs. Fielding emphasis that REST APIs must be hyper-
text driven. In a comment on this post he defines hypertext
(and compares it to the term hypermedia) as follows:

When I say hypertext, I mean the simultane-
ous presentation of information and controls such
that the information becomes the affordance through
which the user (or automaton) obtains choices
and selects actions. Hypermedia is just an ex-
pansion on what text means to include temporal
anchors within a media stream; most researchers
have dropped the distinction. Hypertext does
not need to be HTML on a browser. Machines
can follow links when they understand the data
format and relationship types.

1http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven

Copyright is held by the author/owner(s).
WS-REST 2011, March 28, 2011; Hyderabad, India.
ACM 978-1-4503-0623-2/11/03.

Hence, the essential constraint of REST is the hypermedia
constraint, which in the Richardson Maturity Model (see the
following section 1.1) is described as the last step towards
the full glory of REST.

1.1 Richardson Maturity Model (RMM)
In the Richardson Maturity Model2 (RMM) Leonard Richard-

son describes four levels towards true REST. Level zero
is about tunneling all data through HTTP with only one
HTTP method to just one endpoint usually using Remote
Procedure Calls (RPC) and neglecting any mechanisms of
the Web. Level one introduces resources, so rather than
talking to just one endpoint, several endpoints are used.
Level two switches from just one HTTP method to more ad-
equate methods, oftentimes aligned to the four functions of
persistent storage, CREATE, READ, UPDATE, DELETE
(CRUD). In addition to different HTTP methods, also dif-
ferent HTTP status codes are used in order to signal states.
Finally level three introduces hypermedia controls that give
an answer to the question ”where can one go next”and ”what
can one do next” after each request in form of links. An API
designed along these principles can be autodiscovered by a
user agent by simply following her nose.

The authors, however, prefer not to use the RMM because
it implies that the three lower levels induce a researched set
of properties that imply that there is a known/assessable
value in applying only a subset of the REST constraints.

1.2 On the Hypermedia Constraint
We have cited Fielding’s to-the-point definition of hyper-

media/hypertext above. Next, we define application state.
The problem with application state, however, is that it is
understood differently by different people. We tend to a
definition that is explained best with the example of pagi-
nation on a search engine results page. Assume each page
contained a link to its direct successor and predecessor. If
the current page has a link to page seven and page nine,
there can be directly implied that the current page must be
page eight, if, and only if, the relations of the links are known
beforehand. In consequence the application is in state eight,
without the explicit need to serialize this state somehow (and
without the application even being aware of the existance of
such state eight). The state machine of an application is
not defined by the service, but by the user agent. In other
words, the application comes into being by the choices the
user agent makes, not by what the service intended.

2http://martinfowler.com/articles/
richardsonMaturityModel.html

11

2. HYPERMEDIA CONTROLS
The hypermedia constraint is enabled by embedding hy-

permedia controls (e.g., links, forms) in the representations
made available to the client. There is no standard way to
represent these controls, however, some common practices.

2.1 Atom Syndication Format (RFC4287)
In the Atom Syndication Format [8] there is the atom:link

element that defines a reference from an entry or feed to a
Web resource. The (simplified) structure of the element is
as follows:

1.5
atomLink = element atom:link {

attribute href { atomUri },
attribute rel { atomNCName | atomUri }?,
attribute type { atomMediaType }?,
attribute hreflang { atomLanguageTag }?,
attribute title { text }?,
attribute length { text }?}

The @href attribute must contain the link’s IRI (the re-
sponse to the question ”where can one go next”). The re-
sponse to the question ”what can one do next”can (not must)
be given in the link’s @rel attribute. Its value can be a pre-
defined value3, or an IRI for custom link relations.

2.2 Google Data Protocol
The Atom Publishing Protocol[4] is an application-level

protocol for publishing and editing Web resources. The
Google Data Protocol[3] extends the Atom Publishing Pro-
tocol for processing queries, authentication, and batch re-
quests. It is based on HTTP transfer of Atom-formatted rep-
resentations. There are two serializations available: XML
and JSON4. The structure of the XML serialization is the
same as in 2.1, the structure of the JSON serialization can
be seen below:

1.5
"link": [{

"rel": "...",
"type": "...",
"href": "..."}]

The elements and attributes of the JSON serialization are a
straight-forward mapping of the XML serialization, its ad-
vantage is that it is directly usable in JavaScript.

2.3 Form Technologies
A regular human-readable (X)HTML page can define hy-

permedia controls. Contained links and potential surround-
ing textual information can be understood by humans, while
machines can process the links. Forms can give further in-
structions on the how of the next steps. With forms, al-
lowed values for parameters, like, e.g., enumerations can be
defined.

We adopt the term ”form technologies”from Leonard Richard-
son5 to reference a subset of description languages and mech-
anisms commonly criticized as being brittle6. The goal of

3The current list of pre-defined link relations is maintained
by the IANA at http://www.iana.org/assignments/link-
relations/link-relations.xhtml.
4http://code.google.com/apis/gdata/docs/json.html
5http://www.crummy.com/writing/speaking/2008-
QCon/act3.html
6See, e.g., http://bitworking.org/news/193/Do-we-
need-WADL for WADL.

form technologies like the Web Application Description Lan-
guage (WADL)7 (RESTful only when being used at run-
time, not at design-time), XForms8, or RDF Forms9 is to
describe the HTTP methods, parameters, and allowed val-
ues during an API request. A well-adopted form technology
is OpenSearch10.

2.4 Media Types
Media type give detailed insights into how to process a

representation. They outline which parts of the representa-
tion are hypermedia controls and their meaning. If media
types are defined to be extensible (i.e., in a way that new
data can be added without breaking old user agents that did
not expect this new data), they can help decouple a service
from its implementation. In order to register a new media
type, a registration template can be submitted for review
to the IANA. More specific, i.e., exactly not generic me-
dia types like application/json, application/xml or tex-
t/xml) are an essential aspect of achieving self descriptive-
ness and are key for implementing truely RESTful APIs.

2.5 Link Headers
In the proposed standard document Web Linking[7] Mark

Nottingham specifies relation types for Web links and how
such links can be used with a Link header field in HTTP. In
addition to that the document also defines a registry for link
relations (section 6.2.2), therewith updating the relations
defined in the Atom Syndication Format. Quoting from [7]:

The Link entity-header field provides a means
for serialising one or more links in HTTP head-
ers. It is semantically equivalent to the <LINK>
element in HTML, as well as the atom:link feed-
level element in Atom [RFC4287].

A concrete example is shown below:

1.5
Link: <http :// search.example.org/results/page7 >;

rel=" previous "; title=" previous results"
Link: <http :// search.example.org/results/page9 >;

rel="next"; title="next results"

As outlined in the same example in section 1.2, the implica-
tion is that the current page is page 8, as the link relations
previous and next refer to an ordered series of resources.
Link relations are not limited to the set of registered re-
lations, but can be any IRI. If we build the bridge to the
world of Linked Data[1] where Tim Berners-Lee defines the
four rules for Linked Data, we can see that there, too, URIs
play a central role:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those
names.

3. When someone looks up a URI, provide useful infor-
mation, using the standards (RDF*, SPARQL).

4. Include links to other URIs, so that they can discover
more things.

Hence, the idea is to combine link relations with meaningful
Linked Data URIs.
7http://www.w3.org/Submission/wadl/
8http://www.w3.org/TR/xforms/
9http://www.markbaker.ca/2003/05/RDF-Forms/

10http://www.opensearch.org/

12

3. HTTP OPTIONS
HTTP OPTIONS is one of the most basic ways to discover

a resource. According to section 5.1.1 of the HTTP/1.1
specification[2] only the methods GET and HEAD must be
supported by all general-purpose servers, all other methods
are optional. The specification says about OPTIONS:

The OPTIONS method represents a request for
information about the communication options avail-
able on the request/response chain identified by
the Request-URI. [. . .] A 200 response SHOULD
include any header fields that indicate optional
features implemented by the server and applica-
ble to that resource (e.g., Allow), possibly includ-
ing extensions not defined by this specification.
The response body, if any, SHOULD also include
information about the communication options.
The format for such a body is not defined by
this specification, but might be defined by future
extensions to HTTP.

OPTIONS is not supported by all servers. The expected
behavior can be seen for example on our university domain
http://www.upc.edu/, including out-of-HTTP extensions:

1.5
$ curl -i -X OPTIONS http ://www.upc.edu/
HTTP /1.1 200 OK
Allow: GET , HEAD , POST , PUT , DELETE , OPTIONS , TRACE ,

PROPFIND , PROPPATCH , MKCOL , COPY , [...]
Content -Length: 0

4. THE HTTP VOCABULARY IN RDF
The HTTP Vocabulary in RDF[6] defines a representation

of HTTP in Resource Description Framework (RDF)[5]. It is
intended to record HTTP(S) request and response messages,
including the various headers. Consider the following HTTP
request:

1.5
$ curl -i http :// dbpedia.org/

-H "Accept: application/rdf+xml"

Modeled in RDF (in Turtle syntax11, prefixes omitted for
the sake of brevity) the request looks like this:

1.5
_:req a http:Request ;

http:httpVersion "1.1" ;
http:methodName "GET" ;
http:mthd <http ://www.w3.org /2008/ http -

methods#GET > ;
http:headers (

[http:fieldName "Host";
http:fieldValue "dbpedia.org";
http:hdrName <http ://www.w3.org /2008/ -

http -header#host >]
[http:fieldName "Accept ";

http:fieldValue "application/rdf+xml";
http:hdrName <http ://www.w3.org /2008/ -

http -header#accept >]
) .

5. COMBINING THE TECHNOLOGIES
Bringing the technologies mentioned above together, we

have first Link headers to transparently inject data into a
response without touching the body of the HTTP message.

11http://www.w3.org/TeamSubmission/turtle/

Second, we have OPTIONS as a means of discovering a re-
source on HTTP level. Third, we have the HTTP Vocabu-
lary in RDF, which allows for HTTP communication to be
modeled.

In order to test how to fulfill the hypermedia constraint
with these technologies, we took an existing Web application
of ours12, and converted it into an API with the functionality
to automatically annotate YouTube videos in RDF, where
the input is a YouTube video ID, and the output an RDF
document. In the course of implementing this API, a set
of secondary wrapper APIs were implemented as well, one
for YouTube video search based on a query, one for Named
Entity Extraction (NEE) based on a text fragment, and one
for URI Lookup (UL) based on a term. See Figure 1 for an
overview of the structure of the services and the link rela-
tions between the service components. We serve the output
of the wrapping services with the pseudo media types appli-
cation/prs.atom+json for YouTube API-based data, with
application/prs.nee-entity+json for NEE-based data, and
with application/prs.ul-entity+json for UL-based data.
The main problem of the API is the output format: the
video annotation service must return RDF in one of its
serializations, in consequence the media types are text/-

turtle, or application/rdf+xml. The RDF/XML media
type13 describes the format, however, no media controls.
With our API it is, however, also possible to modify an ex-
isting automatically generated RDF annotation of a video
in order to correct (via PUT) or delete (via DELETE) it.
Hence, there are actions as potential next steps that are not
described by the generic RDF/XML media type. This is
where Link headers come into play. For the video anno-
tation API these are the Link headers that get sent upon
accessing http://localhost/youtube/rdf/3PuHGKnboNY:

1.5
Link: <http :// localhost/youtube/videos /53 PuHGKnboNY

>;
rel=" related ";
type=" application/prs.atom+json";
title="video metadata"

<http :// localhost/youtube/search/opensearch.
xml >;
rel=" search "; title=" search",

<>; rel="edit"; title="delete , modify",
<>; rel=" alternate "; type=" application/rdf+xml

",
<>; rel=" alternate "; type="text/turtle"

Complimentary to Link headers, and due to the extensi-
bility of RDF links can also be added in triple form to the
actual service output (here and below we have only listed
the first from all the Link headers above, prefixes omitted):

1.5
_:link_1 a atom:link ;

atom:href
<http :// localhost/youtube/videos /53 PuHGKnboNY > ;

atom:rel "related" .

In order to explore the API an OPTIONS call against, e.g.,
http://localhost/youtube/videos can be made that re-
turns the following headers and body:

1.5
$ curl -i -X OPTIONS http :// localhost/youtube/videos

HTTP /1.1 200 OK
Content -Type: text/turtle; charset=utf -8

12http://tomayac.com/semwebvid/
13http://tools.ietf.org/html/rfc3870

13

Figure 1: Overview of the API structure with link relations and allowed HTTP method names.

Link: <http :// localhost/youtube/videos /{ video_id}>;
rel=" related"

Allow: GET , HEAD , PUT , DELETE , OPTIONS , PATCH
Content -Length: xx

_:req_1 a http:Request ;
http:httpVersion "1.1" ;
http:methodName "GET" ;
http:mthd <http ://www.w3.org /2008/ http -

methods#GET > ;
exHttp:prefixPath "/ youtube/rdf/" ;
exHttp:suffixPath [

a api:uriTemplate ;
a youtube_data_api_tag_yt:videoid ;

] ;
http:headers (

[http:fieldName "Host";
http:fieldValue "localhost ";
http:hdrName <http ://www.w3.org /2008/ -

http -header#host >]
) .

User agents can then try to discover the constraints (in this
case that the video id URI template is a YouTube video ID).
exHttp stands for an exemplary extension of the HTTP Vo-
cabulary in RDF by URL query path and fragment, which is
not covered by the original vocabulary. The exHttp:prefixPath
stands for the first part of the query path, exHttp:suffixPath
for the second. Combined, the two span the entire query
path. The exHttp:suffixPath is defined as an api:uriTemplate14,
which is described as being of type YouTube Data API video
ID.

6. CONCLUSION
We have shown an approach towards fulfilling the hyper-

media constraint with the OPTIONS message header and
body, where the header contains Link headers, and the body
HTTP Vocabulary in RDF triples. The approach has been
successfully applied to an API with media type constraints.
A criticism of the approach might be that it seems to encour-
age tight coupling, however, not if API consumers interpret

14http://code.google.com/p/linked-data-api/wiki/
API_Vocabulary

their OPTIONS at run-time. Given the complete Semantic
Web stack, automatic reasoning over such service annota-
tions could be possible, and, in addition to that, semantic
link relations open to REST the whole Linked Data world.
Future work will be to evaluate our approach on more and
complexer services, and see how far a consumer can reach
with only discovering OPTIONS, following links, and inter-
preting the results.

7. ACKNOWLEDGMENTS
Partially funded by EU FP7 I-SEARCH project (ref. 248296).

8. REFERENCES
[1] T. Berners-Lee. Linked Data, Juli 27, 2006.

http://www.w3.org/DesignIssues/LinkedData.html.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, June 1999.
http://tools.ietf.org/html/rfc2616.

[3] Google. Google Data Protocol, retrieved on February
10, 2011. http://code.google.com/apis/gdata/.

[4] J. Gregorio and B. de hÓra. The Atom Publishing
Protocol, October 2007.
http://tools.ietf.org/html/rfc5023.

[5] G. Klyne, J. J. Carroll, and B. McBride. Resource
Description Framework (RDF): Concepts and Abstract
Syntax. W3C Recommendation, February 10, 2004.
http://www.w3.org/TR/rdf-concepts/.

[6] J. Koch and C. A. Velasco. HTTP Vocabulary in RDF
1.0, 29 October 2009.
http://www.w3.org/TR/HTTP-in-RDF/.

[7] M. Nottingham. Web Linking, October 2010.
http://tools.ietf.org/html/rfc5988.

[8] M. Nottingham and J. Sayre. The Atom Syndication
Format, December 2005.
http://tools.ietf.org/html/rfc4287.

14

