
Functional Descriptions as the Bridge between
Hypermedia APIs and the Semantic Web

Ruben Verborgh
Ghent University – IBBT

ELIS, Multimedia Lab
Gaston Crommenlaan 8/201

9050 Ghent, Belgium
ruben.verborgh@ugent.be

Thomas Steiner
Universitat Politècnica

de Catalunya
Department LSI

08034 Barcelona, Spain
tsteiner@lsi.upc.edu

Davy Van Deursen
Ghent University – IBBT

ELIS, Multimedia Lab
Gaston Crommenlaan 8/201

9050 Ghent, Belgium
davy.vandeursen@ugent.be

Sam Coppens
Ghent University – IBBT

ELIS, Multimedia Lab
sam.coppens@ugent.be

Joaquim Gabarró Vallés
Universitat Politècnica

de Catalunya
gabarro@lsi.upc.edu

Rik Van de Walle
Ghent University – IBBT

ELIS, Multimedia Lab
rik.vandewalle@ugent.be

ABSTRACT
The early visions for the Semantic Web, from the famous
2001 Scientific American article by Berners-Lee et al., feature
intelligent agents that can autonomously perform tasks like
discovering information, scheduling events, finding execution
plans for complex operations, and in general, use reasoning
techniques to come up with sense-making and traceable
decisions. While today—more than ten years later—the
building blocks (1) resource-oriented rest infrastructure,
(2) Web apis, and (3) Linked Data are in place, the en-
visioned intelligent agents have not landed yet. In this pa-
per, we explain why capturing functionality is the connection
between those three building blocks, and introduce the func-
tional api description format restdesc that creates this
bridge between hypermedia apis and the Semantic Web.
Rather than adding yet another component to the Semantic
Web stack, restdesc offers instead concise descriptions that
reuse existing vocabularies to guide hypermedia-driven agents.
Its versatile capabilities are illustrated by a real-life agent
use case for Web browsers wherein we demonstrate that
restdesc functional descriptions are capable of fulfilling the
promise of autonomous agents on the Web.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Information Storage and
Retrieval—Semantic Web; H.3.4 [Information Systems]:
Information Storage and Retrieval—World Wide Web; H.3.5
[Online Information Services]: Web-based services

Keywords
api descriptions, hypermedia, rest, Service descriptions,
Semantic Web, Web apis, Web services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2012, April 2012; Lyon, France
Copyright 2012 ACM 978-1-4503-1190-8/12/04 ...$10.00.

1. AGENTS NEED FUNCTIONALITY

1.1 We have the APIs—where are the agents?
The Web: one vision, thousands of services, billions of

data sources. But how many automated agents are there?
In the vision put forward by Tim Berners-Lee [4], intelligent
agents would solve a task for humans by consuming services,
interpreting information, and delivering the desired result.
Now, more than a decade later, all necessary infrastructure
for those agents to function seems to be in place. This is why
Jim Hendler, co-author of the initial vision article, stepped
forward and asked the fundamental question [18]:

“ So where are all the agents?
”

The Semantic Web has arrived but its envisioned main
consumers, the intelligent agents [17], are still missing. To
find causes for this important void on the Web for agents,
we should examine the essentials of which this Web consists:

(A) a scalable, resource-oriented rest infrastructure [13];

(B) an extensive collection of Web apis or services [9];

(C) a large amount of Linked Data and ontologies [5].

Clearly, the above elements together fulfill the required con-
ditions for the existence of agents as originally envisioned,
but why are they insufficient? The answer is simple, yet
subtle: while the elements are there, we lack the link that
combines and integrates the three of them: functionality.
Currently, there is no straightforward way to capture this.

1.2 Functionality binds the Web for agents
A simple answer, however, does not imply a simple so-

lution. We therefore do not claim to have found a definite
entrance to the agent-enabled Web. What we do claim is
to have identified functionality as the central concept and
a way to closely connect the three aforementioned elements.
We define functionality as the means that enables agents to
use the http rest infrastructure (A) to learn what a spe-
cific service (B) can do with Linked Data (C).

Nowadays, clients have to be programmed against a spe-
cific api and vocabulary, because they cannot decide au-
tonomously what services and data they need. To remedy
this problem, rest advocates the principle of Hypermedia

as the Engine of Application State (hateoas, [11]), which
demands that a server supplies the possible next steps along-
side each resource. That way, an agent does not need to
know in advance how to use an api; instead, it can just
“follow its nose” at runtime through these supplied hyperme-
dia controls. But how can an automated agent understand
what it means to follow such a hypermedia link? The goal of
our approach is therefore to provide a machine-processable
description of the functionality of hypermedia links, since
functionality is the key differentiating characteristic between
Web services and consequently the crucial factor for auto-
mated decisions. restdesc will thus be a method to capture
functionality, integrating rest infrastructure, services, and
Linked Data—the three essential elements.

2. RESTDESC BUILDS BRIDGES

2.1 Connecting the essential elements
Let us first investigate several observations that connect

the three elements identified above.
The RESTful Web is resource-oriented. Most pro-

grammers tend to be familiar with method-based thinking.
As a consequence, there has been a tradition of Web service
techniques that bend http [12] to act as a tunneling protocol
for action messages (e.g., soap [15]). However, this does not
align with the fundamental principles of resource-oriented
architectures [13] and rules out the hypermedia mechanism.
Designing Web services for intelligent agents requires a dif-
ferent mindset, by thinking in resources instead of in actions.
The Semantic Web is also based on those same resources
(hence, the Resource Description Framework or rdf [22]),
another reason the Web for agents should focus on resources.

Links are the Web’s vital bridges. Since the begin-
ning, hyperlinks have been a crucial element of the World
Wide Web, and continue to be a substantial success factor.
This is certainly true for the human Web, and even more
for rest and the Semantic Web, where meaning is created
and defined by linking to specific uris [5]. The possibility
to uniquely identify and link to a resource is so crucial that
it should apply to all intelligent services. Fielding indeed
famously described hypertext as “the simultaneous presen-
tation of information and controls” [11].

Simplicity is preferred over complexity. The sim-
plicity of the http rest architecture lies in its uniform in-
terface, harnessing an extreme variety in resources. Only
a handful of actions provide for the majority of Web inter-
actions. Similarly, the Semantic Web is based on a simple,
threefold model, which accommodates for all of its data. We
feel it is necessary to continue on this same course of sim-
plicity to maximize the efficiency of our description method.

2.2 RESTdesc describes functionality
Now that its needs have been identified, we present

a resource-oriented and hyperlink-based method that de-
scribes Web services in an elegant way. restdesc is entirely
created using existing technologies and mechanisms, while
its novelty lies in the creative combination of the latter for
functional service description. restdesc expresses descrip-
tions in Notation3 (n, [2]), a Semantic Web language put
forward by Tim Berners-Lee. n builds upon rdf, adding
straightforward concepts such as variables and graphs.

As an example, we describe an image thumbnail service:
given an image, it generates a smaller version of the im-

@prefix ex: <http://example.org/image#>.
@prefix http: <http://www.w3.org/2011/http#>.
@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

{ ?image ex:smallThumbnail ?thumbnail. } 1
=>
{
_:request http:methodName "GET"; 2

http:requestURI ?thumbnail;
http:resp [http:body ?thumbnail].

?image dbpedia-owl:thumbnail ?thumbnail. 3
?thumbnail a dbpedia:Image;

dbpedia-owl:height 80.0.
}.

Listing 1: restdesc describes an image thumbnail service
elegantly with hyperlinks and existing vocabulary.

age with a fixed height. Listing 1 shows the corresponding
restdesc description. It is constructed as an implication
triple: a precondition graph (between braces {}) is stated
to imply (using the arrow symbol =>) a postcondition graph
(between the second pair of braces {}).

The above description can be interpreted in three parts as:
IF you have an image with a smallThumbnail hyperlink 1

THEN you can make an http GET request to that link 2

to receive a thumbnail of the image with height 80 pixels. 3

Immediately, the powerful nature of restdesc becomes ap-
parent: this description unites infrastructure (http), ser-
vices (thumbnail generation), and data (vocabulary reuse).

As a concrete instance,1 suppose an agent has an image
located at http://example.org/images/37. When it re-
quests this url, the server returns a representation of this
image, accompanied by several hyperlinks (e.g., via Link
headers [28]). The description in Listing 1 tells the agent
that, in order to obtain a thumbnail of 80 pixels in height,
it should find a hyperlink with relation smallThumbnail.
This hyperlink is amongst the returned links, and points to
/images/37/thumb. Following the instructions in the de-
scription, the agent thus performs a GET request to
/images/37/thumb, in response to which the server gener-
ates the desired thumbnail and sends it back.2

2.3 The RESTdesc approach is different
The example makes clear that we depart from traditional

approaches. By design, restdesc integrates with existing
Semantic Web tools and practices. The important differ-
ences with other description methods are listed below.

Vocabulary reuse – We do not force description authors
to learn and use a new vocabulary. restdesc adapts to the
application domain of the author, instead of the other way
around. Listing 1 uses a service-specific vocabulary (ex),
dbpedia [6] vocabularies (dbpedia and dbpedia-owl), and

1The instantiation process can be performed automatically
by common n reasoners, as detailed in Subsection 3.4.

2One could argue that many of the semantics of Listing 1 can
be expressed by ontological constructs. While this holds for
simple examples, and generally for dereferencing (e.g., GET),
more complex relationships and state-changing operations
(e.g., POST and PUT) go beyond the expressivity of ontologies.

the http vocabulary (http, [23]). We do not need addi-
tional vocabularies to describe the service, because of the
resource-orientedness of our approach: the resources in the
description are the resources of the service. Variables, an n
feature, instantiate the vocabulary for concrete resources.
Hypermedia link types are simply predicates in the applica-
tion’s ontology (ex), since they indeed express a connection
between two resources.

Technology reuse – restdesc does not require new mod-
els or paradigms. Instead, it adopts existing Semantic Web
technologies and is therefore compatible with existing tools.
Common n reasoners can interpret restdesc descriptions
and instantiate them for concrete situations (Subsection 3.4).
Once instantiated, the descriptions become plain rdf, ensur-
ing compatibility with clients that do not wish to use n.
Importantly, n reasoners are by design able to perform
goal-driven service compositions by combining multiple
restdesc descriptions, without requiring additional plugins.

Compactness and simplicity – Authors and consumers
are not faced with long and verbose descriptions that are dif-
ficult to understand at sight. restdesc descriptions provide
at a glance the essence of a service: its functionality, the
precise task the service performs. This high level of com-
pactness is possible because restdesc only describes what
is strictly necessary, namely the functional hypermedia re-
lation between resources and the http request that obtains
that result. Details, such as parameter types, reside where
they belong: in ontologies. The example in Listing 1 shows
for instance that the thumbnail and height properties reuse
the dbpedia ontology, which provides their characteristics.

Similarly, the hypermedia relation types (being rdf pred-
icates) can belong to proprietary or public vocabularies [19,
28]. For instance, smallThumbnail represents a 80 pixels
high image only in a specific application context. Other
applications could have similar or different definitions. Fur-
thermore, it is precisely the meaning of these hyperlinks that
is fully defined by the restdesc description: in this concrete
case, Listing 1 describes the meaning of the application-
specific relation smallThumbnail.

3. RESTDESC IN PRACTICE

3.1 Description anatomy: logical grounds
Where Section 2 introduced restdesc through an exam-

ple, this section aims to provide a rigorous description of
what restdesc descriptions are and how to create them.
Basically, the functional description provided by restdesc
describes the result of an action A on a resource r. More
formally, it explains: given a set of preconditions preA on
this resource r, what request requestA is necessary to obtain
a set of postconditions postA for that action A:

A(r) ≡ preA(r)
requestA(r)
=======⇒ postA(r) (1)

This means that, when the preconditions for the action are
fulfilled, executing the request will lead to the postcondi-
tions. For instance, having an image and requesting a GET

operation on its thumbnail uri implies that we will receive
a thumbnail image.

The complexity in Equation 1 lies in the fact that the
implication is fulfilled only when the request for the action
is successfully carried out. To obtain simple expressions that
can be reasoned upon easily, we must express Equation 1 in a

@prefix http: <http://www.w3.org/2011/http#>.
{

Preconditions about a certain resource. . .
}
=>
{

. . . imply the existence of a certain request. . .
_:request http:methodName [...];

http:requestURI [...];
http:resp [...].

. . . that effectuates postconditions on this resource.
}.

Listing 2: The general restdesc skeleton is very flexible.

more conventional paradigm. A straightforward conversion
to first-order logic would be to see the request as a part of
the precondition:

A(r) ≡ preA(r) ∧ requestA(r) =⇒ postA(r) (2)

Equation 2 states that, given the preconditions and the fact
that the request has been performed, we obtain the post-
conditions. However, this equation does not always hold in
practice: any actual request could fail to deliver an adequate
response for several reasons, invalidating the above implica-
tion in the general case. Therefore, a better interpretation
of Equation 1 is:

A(r) ≡ preA(r) =⇒ ∃R
(
requestA(r,R) ∧ postA(r,R)

)
(3)

Equation 3 states that when the preconditions are fulfilled,
there exists a request that fulfills the postconditions. Of
course, it is exactly this request that an agent will try to
perform when it wants to achieve the postconditions.

3.2 Creating descriptions
Since n possesses the full power and expressivity of first-

order logic [3], we can write Equation 3 in the n language,
which is the essence of restdesc. Listing 1 shows indeed an
example of this: the precondition (having a smallThumbnail

link) means that a request exists (an http GET to the
smallThumbnail link), which entails a postcondition (receiv-
ing an image with height 80 pixels in the response body).
The general skeleton is displayed in Listing 2.

Often more interesting to agents are state-changing op-
erations using unsafe methods such as PUT or POST. They
can also be described in the restdesc skeleton. For ex-
ample, suppose we want to describe that comments can be
added to images, as in Listing 3. First, we add a hyperlink
from each image resource to its comments resource 1 . For
example, the image http://example.org/images/37 may
have its comments at /images/37/comments. An additional
precondition is that we need to have a comment. We then
describe the request needed to add this comment to that
image 2 . Finally, we explain that the comment is attached
to the image as a result 3 .

3.3 Discovering functionality
In order to make the restdesc description paradigm work

in real-world applications, we need a method to automati-
cally discover descriptions. After all, we aim to make generic
agents perform operations with specific services. We envi-
sion several possible methods, listed below.

http://example.org/images/37
/images/37/comments

@prefix ex: <http://example.org/image#>.
@prefix sioc: <http://rdfs.org/sioc/ns#>.
@prefix http: <http://www.w3.org/2011/http#>.
{

?image ex:comments ?comments. 1
?comment sioc:content ?commentText.

}
=>
{

_:request http:methodName "POST"; 2
http:requestURI ?comments;
http:body ?commentText;
http:resp [http:body ?comment].

?image sioc:has_reply ?comment. 3
?comments ex:contains ?comment.

}.

Listing 3: restdesc allows state-changing operations, such
as adding comments to an image.

Dereference link types – Since we use rdf predicates as
the hypermedia link types, the preferred option is to request
the description of each link by dereferencing its uri. For
instance, the description of the ex:comments relation can be
found directly at http://example.org/image#comments.
Using content negotation, agents can indicate whether they
are interested in the image ontology or the restdesc descrip-
tion. This method thus functions in a link-centric way.

HTTP OPTIONS – The http specification provides an
OPTIONS method, representing “a request for information
about the communication options available on the request/re-
sponse chain identified by the Request-URI ” [12]. While
the specification does not yet determine the response body,
servers could use it to return restdesc descriptions via con-
tent negotiation. For example, an http OPTIONS request
to http://example.org/images/ could return the descrip-
tions in Listings 1 and 3. This method is resource-centric.

Service repository – As a last resort—for instance, when
describing an external a service without access to its server—
repositories can provide descriptions for various services.
The idea is not to have one central repository but multi-
ple repositories (possibly connected), which a client can use
as a starting point. For example, a client can ask to find ser-
vices for images, and the repository could return Listings 1
and 3. This can happen in link- and resource-centric ways.
Hypermedia links between the repository and the service can
be made, allowing hypermedia-driven discovery.

Further experiments will be necessary to indicate which
of the suggested methods will work best in practice. Addi-
tionally, all of the above methods can be used in conjunc-
tion without interference, giving agents as many options for
discovery as they need. In any case, these discovery mecha-
nisms indicate that restdesc can fulfill the needs of generic
clients without bindings to specific apis.

3.4 Interpreting descriptions
How does a client decide what service to use? Clients start

from the current situation and work towards a certain goal.
For example, suppose we have a local image:

<myphoto.jpg> a dbpedia:Image.

Our goal might be to obtain a thumbnail for that image:

<myphoto.jpg> dbpedia-owl:thumbnail _:thumbnail.

@prefix ex: <http://example.org/image#>.
@prefix http: <http://www.w3.org/2011/http#>.
@prefix dbpedia: <http://dbpedia.org/resource/>.
{
?image a dbpedia:Image.

}
=>
{
_:request http:methodName "POST";

http:requestURI "/images/";
http:body ?image;
http:resp [http:body ?image].

?image ex:comments _:comments;
ex:smallThumbnail _:thumb;
ex:mediumThumbnail _:mediumThumb;
ex:belongsTo _:album.

}.

Listing 4: Uploading an image results in links to other
resources with possibly relevant functionality for a use case.

First, using one or more of the methods in Subsection 3.3,
the agent discovers what functionality it has at its disposal.
It retrieves several descriptions, including Listings 1, 3, and 4,
which it can obtain by issuing an OPTIONS request to the uri

http://example.org/. Using a reasoner, the agent can find
out that Listing 1 describes a way to obtain a thumbnail, on
condition that the image has a smallThumbnail link. The
reasoner also devises that such a link can be obtained by
uploading the image, as described by Listing 4.

An important benefit of restdesc is that common n rea-
soners, such as cwm [1, 3] or eye [8], can perform the above
deduction in a completely automated way, without requir-
ing any plugin. Indeed, because restdesc descriptions are
n rules by design, they seamlessly integrate with current
Semantic Web tools. Reasoners are able to directly instanti-
ate restdesc descriptions for a concrete case. For example,
the reasoner can combine Listing 4 with the starting sit-
uation above to obtain the concrete request, filling in the
variables with the actual values. The result is in plain rdf

format, without quantifications, and contains all the details
the client needs to issue this request. Note that the reasoner
does not need access to all data in each step. Instead, it runs
initially with the starting context, the goal, and the avail-
able descriptions, to generate an execution plan. In further
steps, only the actual context and this plan are necessary.

Subsequently, the client can execute this request and up-
load the image to the server as instructed. In response, the
client retrieves a representation of this image, containing
indeed the links indicated by its description in Listing 4.
For example, the actual image may link to comments and
thumbnails as follows:

<http://example.org/images/37>
ex:comments </images/37/comments>;
ex:smallThumbnail </images/37/thumb>;
ex:mediumThumbnail </images/37/thumb_med>;
ex:belongsTo </albums/6>.

The reasoner then similarly instantiates Listing 1 with the
current situation, which now includes the hyperlinks above.
This deduction then indicates that the agent needs to issue
a GET request to the /images/37/thumb resource in order to
obtain the thumbnail. When the client performs this final
request, the initial goal is reached and execution terminates.

http://example.org/image#comments
http://example.org/images/
http://example.org/
/images/37/thumb

4. RESTDESC FOR TODAY’S AGENTS

4.1 Web Intents enable common interactions
Evidently, the Web for agents will not arrive tomorrow,

yet. This does not mean that restdesc cannot be used today.
People access Web applications through browsers, which are
increasingly adopting characteristics of intelligent agents,
either through native support for interactive features, or by
an extension mechanism that allows third-party developers
to enrich people’s browsing experience. Therefore, browsers
present interesting restdesc use cases.

Web Intents [21], a project started by Google Developer
Advocate Paul Kinlan, is driven by the observation that
users expect Web applications to work together seamlessly.
Kinlan states that, for example, a photo gallery Web appli-
cation should be aware of a user’s preferred third party photo
editing Web application, rather than enforcing the specific
one that the gallery happens to be integrated with. Web
Intents therefore proposes client-side service discovery and
inter-application communication. Initially, services register
their intent, i.e., their ability to perform a certain action on
a certain media type (Listing 5). Thereafter, applications
can request to initiate such an action (Listing 6). As a re-
sult, the Web Intents client then starts the desired service
for the user. The developer teams behind the Firefox and
Chrome browsers have committed to provide native Web In-
tents implementations. Meanwhile, full compatibility with
all major browsers is provided by a public JavaScript library.

Web Intents build on a long tradition of annotating links
with plain words and media types. For instance, a priori
meaningless Web links can be given a defined meaning us-
ing hyperlink relations from the list of iana link relations [19]
and by providing a media type. A common example is an-
notating the link to a news feed using the alternate Link
Relation attribute value and the Atom media type:

<a href="feed.xml" rel="alternate"
type="application/atom+xml">

Given such markup, a Web browser can automatically offer
the user to subscribe to that news feed. Another example
is the search Link Relation, which allows user agents to
discover the search functionality of a given website. Web
Intents carries over this idea to describe various standard
interaction patterns between Web applications, such as edit-
ing, sharing, and subscribing.

<intent
action="http://webintents.org/share"
type="image/*"

/>

Listing 5: Web services can easily register an intent by
specifying the action and media type they support.

navigator.startActivity(new Intent(
"http://webintents.org/share", // action
"image/jpeg", // content type
"http://example.org/photo.jpg")); // content

Listing 6: Web applications can offer user-adapted func-
tionality with little effort using Web Intents.

4.2 RESTdesc provides new interactions
The standard interaction patterns carry well-defined se-

mantics in Web Intents. However, many of today’s popular
services [9] offer different interactions that those patterns
do not cover. Some services offer simple operations on cur-
rently uncovered media types—for instance, services that
act on location data, such as a weather forecast service or
a map service. Other services offer more complex operations
on already covered media types—for instance, a service that
recognizes people in an image. Centralized api catalogs like
ProgrammableWeb.com let people categorize and document
services, much like in the early days of World Wide Web
search engines. Still, in order to discover those services,
manual intervention is necessary, because their actions or
media types are currently outside the Web Intents scope.

Adding the power of restdesc service descriptions to Web
Intents creates an automated and more scalable solution.
Web Intents is extensible by design: neither the list of ac-
tions nor the list of media types are fixed. Nonetheless,
service developers cannot simply define new actions, be-
cause existing Web Intents clients would not understand
how to use them. This is where restdesc functional de-
scriptions play an important role, since they can provide
semantics for new intent actions that can be understood by
existing clients, even if the described functionality was not
available when that client was built. Because the goal of
restdesc is precisely to support generic clients in their de-
cision making process, its combination with Web Intents is
a natural step to make new interaction patterns possible.

4.3 Generalizable solutions with Linked Data
Discovering functionality—for example, that a site offers

a news feed for feed readers—is possible due to the fact that
a set of preconditions is fulfilled. In this news feed example,
the preconditions are the existence of the link to a resource
(e.g., feed.xml), the presence of a certain link relationship
(e.g., alternate), and the availability of a specific media
type (e.g., application/atom+xml). Web browsers either
already have those preconditions hardcoded, or can be sup-
plemented with browser extensions to offer services for those
preconditions. The postcondition in this case is that the user
will be subscribed to the feed in her preferred news reader.

Leaving the example and more generally speaking, it is
obvious that no user agent (including, but not limited to
Web browsers) can be prepared for the functionality of every
Web api and can have foreseen a mechanism to deal with it.
When we think of various apis—such as currency conversion,
weather forecasts, or movie rental—we see that they all have
well-defined pre- and postconditions, where the execution of
a particular api request is the state transfer from pre to post.
Since restdesc is based on the formal description of pre- and
postconditions, it is an adequate candidate to capture these
interactions.

However, as just noted, not all possible use cases can be
foreseen. How can restdesc then anticipate on every possi-
ble api that will be described with it? And how will an agent,
when it sees a restdesc pre- and postcondition, be able to
know for what cases this api could be useful? The answer is
provided by Linked Data. An ever-growing amount of struc-
tured content is being published on the Web [5]. Recent
Web-scale structured data efforts such as Facebook’s Open
Graph Protocol [10] or Google, Yahoo!, and Microsoft’s
schema.org specification [14] are intensifying this trend even

more. These initiatives help make content—such as prices,
locations, or movies—machine-accessible, closing the circle
to interpretation of conditions:

• IF your product page contains a price (as Linked Data),
THEN you can convert its value to your local currency
with this request.

• IF your travel info refers to a location (with schema.org),
THEN you obtain its weather forecast with this request.

• IF you like the summary of a movie (via Open Graph),
THEN you can buy its dvd with this request.

Again, reasoning can play an important part here. By in-
corporating ontological knowledge into the reasoning process,
a bridge between different ways of expressing information
can be built. As a result, service discovery can work even
in cases where the vocabulary of the description is different
from the vocabulary of the data. Furthermore, reasoning
also allows different clients to obtain the information they
need to construct the request that satisfies their goals.

All of the above indicates that the long-envisioned intel-
ligent agents suddenly become within reach, using the tools
and technology that are already available on the Web today.
In the following section, we discuss the chances, risks, and
limitations of our approach.

5. DISCUSSION

5.1 Justification of employed technologies
We deliberately chose to describe services that employ the

resource-oriented and hypermedia principles underpinning
the fundamentals of rest. Commonly referred to as rest

services or restful apis, they contrast with services that use
Remote Procedure Calls, the so-called rpc-style. Unfortu-
nately, several services that label themselves as “rest” lack
a hypertext-driven architecture [11], typically by falling back
to uri construction rules defined in advance instead of at run-
time, which makes them plain http interfaces [30]. However,
the rest community is working hard to turn the tide.

The reason we decide to focus on rest services—in the
original meaning intended by Fielding and others—is that
they provide a beautiful integration on every level of the
Web. After all, http was designed with rest principles in
mind [12], offering a high degree of scalability. It there-
fore comes as no surprise that the resource-oriented nature
of rest aligns perfectly with the resources on the Semantic
Web, where the Resource Description Framework (rdf) is
the dominant model. This alignment is not a coincidence—
it is a feature, which we purposely embrace. Also, even if
a service does not fully follow rest principles, restdesc can
still describe it, albeit with more verbosity (e.g., using string
concatenation to construct uris).

Therefore, we see our choice for rest as an important ben-
efit, because resource-orientation is a key principle of both
the Web of Services and the Semantic Web. The rest com-
munity’s efforts convince many services to move towards
a restful architecture [9]. Furthermore, when a server of-
fers such a resource- and hypermedia-based api, the concept
“service” is gradually fading, since clients then see noth-
ing but resources and the relationships between them. The
service exists only behind the scenes, but its functionality
manifests itself in the resources—which is why we coined
restdesc as a functional description format.

Another important decision is our choice for Notation3,
whose simplicity and powerful logic foundation reflect on
restdesc. This decision was prompted by the observation
that, in order to make a statement about generic instead
of specific resources, support for quantification is necessary,
yet currently not provided by rdf. The same observation
was implicitly made by owl for Services (owl-s, [26]) and
Linked Open Services (los, [27]), which both have to resort
to richer expression languages inside rdf string literals.

While n offers an integrated solution for quantification
with a strong logic basis and a minimal extension to rdf,
some clients might not be fully compatible with it. Our an-
swer here is twofold: first, the clients themselves do not need
to consume n, as the reasoner is the component carrying out
the n-related transformations and providing the client with
instantiated representations in plain rdf format. Secondly,
powerful n consumers such as cwm [1] and eye [8] exist for
several years now, the latter being compatible with a broad
spectrum of other Web logic languages, thanks to its inter-
operability with the wc Rule Interchange Format (rif [20]).

5.2 Feasibility of the RESTdesc vision
One of the key questions is of course whether our proposed

approach is able to realize the functional descriptions that
generic intelligent agents need. Therefore, we investigated
how current state-of-the-art reasoners perform on restdesc
descriptions, based on functionality. The main questions
are whether restdesc descriptions are sufficient for a generic
reasoner without plugins, and whether the reasoner returns
sufficient information for a generic client.

To verify this, we have fed the descriptions of Listing 1
and Listing 4 into a reasoner, together with respectively
the starting situation (a local image) and the post-upload
situation (a hyperlinked resource). We then examined the
result and verified that in both cases, the necessary details
to construct the http request were correctly present. This
experiment and its result details are publicly available at
http://notes.restdesc.org/2011/images/.

Additionally, we needed to prove that the reasoner can
create an execution plan, as indicated in Subsection 3.4.
The descriptions of Listings 1 and 4 should be sufficient
for the reasoner to, given the starting situation (a local im-
age), create a plan to achieve a goal (obtaining a thumb-
nail). We verified that it correctly generates the details of
the two required requests: uploading the image and retriev-
ing the thumbnail. This experiment and its result details
are also available online. Furthermore, from previous ex-
perience with reasoner-based composition, we are confident
that this approach is scalable to a level that comfortably
enables practical use [31].

The only constraints imposed by restdesc are 1) for agents
to understand the http vocabulary in rdf—a reasonable
condition, since one of their main tasks is to deal with http

requests and responses—and 2) for developers to be able
to design and work with descriptions in restdesc. Since
restdesc does not invent a new language but adopts n, the
design should not pose large problems for developers familiar
with the Semantic Web. To support description creators, we
provide an informational website http://restdesc.org/ with
an interactive online group for questions and advice. Also,
developers unfamiliar with reasoning techniques can use the
reasoner as a black box, for example through a Web service.

http://notes.restdesc.org/2011/images/
http://restdesc.org/

5.3 Current limitations
A first issue is the responsibility for creating restdesc de-

scriptions. This is indeed a manifestation of the chicken-and-
egg problem that many new Semantic Web developments
face: widespread support makes a technology used, but sup-
port only evolves in case of widespread use. We aim to
counter this argument by making the threshold to restdesc
as low as possible by its innate simplicity and consiceness,
adoption of existing technologies, and availability of commu-
nity support. Additionally, we plan to bootstrap the process
by providing descriptions for popular Web apis.

Secondly, the main benefit of restdesc—its solid integra-
tion with the Semantic Web—is also its main dependency.
Current research questions on several topics, such as onto-
logical alignment, are therefore also relevant for restdesc.
Just like the Semantic Web, restdesc depends on the avail-
ability of machine-readable information and the interlinking
of that information, which similarly can be a benefit (e.g.,
in terms of scalability and independence) or a burden (e.g.,
in case of insufficient availability or absence).

Thirdly, the dependency on Semantic Web technologies
means that restdesc inherits some of the limitations of rdf.
For instance, rdf does not provide a native way to state
that a resource does not exist. This is a consequence of the
open world assumption: the absence of a certain triple does
not necessarily indicate its inexistence. Therefore, there is
currently no direct way to explain a DELETE request. Even
if there was, it still would carry a danger of contradiction
in the first-order logic model, because a resource must exist
before you can delete it—but if you delete it, it does not
exist anymore. However, we believe that workarounds are
possible, such as introducing a “deleted” flag, or the notion
that future requests will result in a 410 Gone status code [12].
But most importantly, the semantics of DELETE are already
fully defined by http itself, so there is most likely no need
to redefine them in restdesc in the first place. Still, we have
to be well aware of those limiting model properties.

6. RELATED WORK
Web service or Web api description has been a topic of

intense research research for at least a decade. There are
many approaches to service description with different under-
lying service models. Earlier service description technologies
mainly focus on technical aspects like input and output pa-
rameters, data types, and exceptions. Prominent examples
include the Web Services Description Language (wsdl, [7])
and to some extent also the Web Application Description
Language (wadl, [16]). However, recently, a trend towards
more functionality-oriented formats is evolving.

Semantic Markup for Web Services (owl-s, [26]) is a well-
known service ontology. owl-s requires an additional de-
scription for the grounding, commonly wsdl, which results
in owl-s inheriting wsdl’s issues like verbosity and perceived
complexity. The lack of semantic description of input and
output parameters in wsdl is addressed by Semantic An-
notations for wsdl (sawsdl, [24]). However, no functional
parameter relation is established.

Linked Open Services (los, [27]) expose functionality on
the Web using Linked Data technologies, namely http, rdf,
and sparql. Input and output parameters are described with
sparql graph patterns embedded inside rdf string literals to
achieve quantification, which rdf does not support natively.

Linked Data Services (lids, [29]) define interface conventions
that are compatible with Linked Data principles [5] and are
supported by a lightweight formal model. This enables au-
tomatic creation of lids interfaces and integration of links to
lids in existing data sets.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the functional description

format restdesc. The obvious question is: why would this
method offer what several previous formats could not? And
why would restdesc help fulfill the long-standing promise of
generic intelligent agents?

restdesc differs in that it finds a solution inside the bound-
aries of currently available Web technology, instead of intro-
ducing new techniques that require new tools and infras-
tructure. Let us look back to restdesc from our three initial
perspectives: infrastructure (A), services (B), and data (C).

On the level of infrastructure, a strong link with http can
be identified. restdesc is based on the fundamental proper-
ties of the Web and especially its resource-oriented nature,
the ideas of which formed the basis of the current http .

standard [12]. The hypermedia constraint inherent to rest

is satisfied by extensively making use of link types, which
directly map to rdf predicates. The essence of restdesc is
indeed to describe the relationships among resources and
the concrete http requests instantiating the functionality of
those relationships.

For services, restdesc uncovers their key differentiating
feature, namely functionality, exposing this in a logical way
that integrates semantics and the rest architectural modali-
ties. This enables services to involve in new and different in-
teractions in an automated way, making compositions based
on functionality instead of input and output parameters.

Finally, Linked Data and vocabularies form an important
part of restdesc, again because existing work is fully reused.
A major strength of restdesc is that it functions with the
vocabulary of the application domain. This gives service
authors the freedom to select the vocabularies that explain
their functionality with the greatest expressiveness. Thanks
to the links between different vocabularies and data, a wide
interoperability is possible.

This paper aims to be an important step towards simple
functional descriptions. Several important research chal-
lenges are still ahead. For example, integration with au-
thentication mechanisms and other real-world applicational
concerns will have to be fluently incorporated, especially in
pay-per-use scenarios where a lower number of requests is
preferred. A study showed that more than 80% of all Web
apis on the Web service catalog ProgrammableWeb.com re-
quire some form of authentication [25]. In general, the han-
dling of exceptional situations in a restful context, resulting
in changes to the initial execution plan, should be investi-
gated. Also, developers must have a clear understanding
of the benefits of restdesc for their services. This is why
we will work on implementing agents that use the power of
restdesc to accomplish tasks for human needs.

The most important realization, however, is that restdesc
is not a technology for the future, but for today. Starting
from within Web browsers—for instance, with Web Intents—
restdesc can deliver services on demand, precisely because
it captures and exposes functionality. After all, the Web for
agents will not introduce a disruptive change, but rather be
the result of an evolution that has already started.

8. ACKNOWLEDGMENTS
The described research activities were funded by Ghent

University, the Interdisciplinary Institute for Broadband Tech-
nology (ibbt), the Institute for the Promotion of Innovation
by Science and Technology in Flanders (iwt), the Fund for
Scientific Research Flanders (fwo Flanders), and the Euro-
pean Union. This work was partially supported by the Eu-
ropean Commission under Grant No. 248296 FP7 (i-search
project). Joaquim Gabarró is partially supported by TIN-
2007-66523 (formalism), and SGR 2009-2015 (alcom).

9. REFERENCES
[1] T. Berners-Lee. cwm. Semantic Web Application

Platform, 2000–2009. Available at
http://www.w3.org/2000/10/swap/doc/cwm.html.

[2] T. Berners-Lee and D. Connolly. Notation3 (n):
A readable rdf syntax. wc Team Submission, Mar.
2011. Available at
http://www.w3.org/TeamSubmission/n3/.

[3] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and
J. Hendler. nlogic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming,
8(3):249–269, 2008.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34–43, 2001.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data
– The Story So Far. International Journal On Semantic

Web and Information Systems, 5(3):1–22, 2009.

[6] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. dbpedia –
a crystallization point for the Web of Data. Web

Semantics: Science, Services and Agents on the World

Wide Web, 7(3):154–165, 2009.

[7] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(wsdl) 1.1. wc Note 15 March 2001, Mar. 2001.
Available at http://www.w3.org/TR/wsdl.

[8] J. De Roo. Euler proof mechanism, 1999–2011.
Available at http://eulersharp.sourceforge.net/.

[9] A. DuVander. 4,000 Web apis: What’s hot and what’s
next?, Oct. 2011. Available at
http://blog.programmableweb.com/2011/10/03/

4000-web-apis-whats-hot-and-whats-next/.

[10] Facebook. Open Graph Protocol. Specification, Nov.
2011. Available at http://ogp.me/.

[11] R. T. Fielding. rest apis must be hypertext-driven.
Untangled – Musings of Roy T. Fielding, Oct. 2008.
Available at http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven.

[12] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – http/1.1. Request for Comments:
2616, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[13] R. T. Fielding and R. N. Taylor. Principled design of
the modern Web architecture. ACM Transactions on

Internet Technology, 2(2):115–150, May 2002.

[14] Google, Inc., Yahoo, Inc., and Microsoft Corporation.
Schema.org. Specification, June 2011. Available at
http://schema.org/docs/schemas.html.

[15] M. Gudgin, M. Hadley, N. Mendelsohn, and J.-J.
Moreau. soap version 1.2 part 1: Messaging framework

(second edition). wc Recommendation, Apr. 2007.
Available at http:

//www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[16] M. Hadley. Web Application Description Language.
wc Member Submission, Aug. 2009. Available at
http://www.w3.org/Submission/wadl/.

[17] J. Hendler. Agents and the Semantic Web. ieee

Intelligent Systems, 16(2):30–37, Mar–Apr 2001.

[18] J. Hendler. “Why the Semantic Web will never work”.
Presented at the 7th Extended Semantic Web
Conference (eswc 2011), Crete, Greece, May 2011.
Available at http://www.slideshare.net/jahendler/

why-the-semantic-web-will-never-work.

[19] iana. Link relations, Nov. 2011. Available at
http://www.iana.org/assignments/link-relations/

link-relations.xml.

[20] M. Kifer. Rule Interchange Format: The framework.
In D. Calvanese and G. Lausen, editors, Web Reasoning

and Rule Systems, volume 5341 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2008.

[21] P. Kinlan. Web Intents. Specification, Dec. 2010.
Available at http://webintents.org/.

[22] G. Klyne and J. J. Carrol. Resource Description
Framework (rdf): Concepts and Abstract Syntax. wc

Recommendation, Feb. 2004. Available at http:

//www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[23] J. Koch, C. A. Velasco, and P. Ackermann, Eds. http

vocabulary in rdf 1.0. wc Working Draft, May 2011.
Available at http://www.w3.org/TR/HTTP-in-RDF10/.

[24] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell.
Semantic Annotations for wsdl. ieee Internet

Computing, 11:60–67, 2007.

[25] M. Maleshkova, C. Pedrinaci, J. Domingue, G. A. Rey,
and I. Martinez. Using semantics for automating the
authentication of Web apis. In International Semantic

Web Conference (1), pages 534–549, 2010.

[26] D. Martin, M. Burstein, J. Hobbs, and O. Lassila.
owl-s: Semantic Markup for Web Services. wc

Member Submission, Nov. 2004. Available at
http://www.w3.org/Submission/OWL-S/.

[27] B. Norton and R. Krummenacher. Consuming
dynamic Linked Data. In 1st International Workshop on

Consuming Linked Data (November 2010), 2010.

[28] M. Nottingham. Web linking, Oct. 2010. Available at
http://tools.ietf.org/html/rfc5988.

[29] S. Speiser and A. Harth. Integrating Linked Data and
services with Linked Data Services. In G. Antoniou,
M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis,
P. De Leenheer, and J. Pan, editors, The Semantic

Web: Research and Applications, volume 6643 of Lecture

Notes in Computer Science, pages 170–184. Springer
Berlin / Heidelberg, 2011.

[30] T. Steiner and J. Algermissen. Fulfilling the
hypermedia constraint via http options, the http

vocabulary in rdf, and Link Headers. Proceedings of the

2nd International Workshop on RESTful design, 2011.

[31] R. Verborgh, D. Van Deursen, E. Mannens, C. Poppe,
and R. Van de Walle. Enabling context-aware
multimedia annotation by a novel generic semantic
problem-solving platform. Multimedia Tools and

Applications, 2012.

http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/wsdl
http://eulersharp.sourceforge.net/
http://blog.programmableweb.com/2011/10/03/4000-web-apis-whats-hot-and-whats-next/
http://blog.programmableweb.com/2011/10/03/4000-web-apis-whats-hot-and-whats-next/
http://ogp.me/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.ietf.org/rfc/rfc2616.txt
http://schema.org/docs/schemas.html
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/Submission/wadl/
http://www.slideshare.net/jahendler/why-the-semantic-web-will-never-work
http://www.slideshare.net/jahendler/why-the-semantic-web-will-never-work
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://webintents.org/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/Submission/OWL-S/
http://tools.ietf.org/html/rfc5988

	Agents need functionality
	We have the APIs—where are the agents?
	Functionality binds the Web for agents

	RESTdesc Builds Bridges
	Connecting the essential elements
	RESTdesc describes functionality
	The RESTdesc approach is different

	RESTdesc in practice
	Description anatomy: logical grounds
	Creating descriptions
	Discovering functionality
	Interpreting descriptions

	RESTdesc for today's agents
	Web Intents enable common interactions
	RESTdesc provides new interactions
	Generalizable solutions with Linked Data

	Discussion
	Justification of employed technologies
	Feasibility of the RESTdesc vision
	Current limitations

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

