Proof-based Automated Web API Composition and Integration

Ruben Verborghl, Thomas SteinerQ, Erik Mannensl, Rik Van de Wallel, and Joaquim Gabarr6 Vallés?
' iMinds — Multimedia Lab — Ghent University, Belgium
{ruben.verborgh,rik.vandewalle } @ugent.be
? Universitat Politécnica de Catalunya — Department LSI, Spain
tsteiner @lsi.upc.edu

Abstract

Many providers offer Web APIs that expose their services to
an ever increasing number of mobile and desktop applications.
However, all interactions have to be explicitly programmed
by humans. Automated composition of those Web APIs could
make it considerably easier to integrate different services
from different providers. In this paper, we therefore present an
automated Web API composition method, based on theorem-
proving principles. The method works with existing Semantic
Web reasoners at a Web-scale performance. This makes proof-
based composition a good choice for Web API integration.
We envision this method for use in different fields, such as
multimedia service and social service composition.

Keywords: service composition, Web API composition

1 Introduction

The number of publicly available Web APIs grows at a tremen-
dous rate. By the end of 2012, more than 8,000 APIs are avail-
able, some of which are consulted billions of times per day [2].
Thanks to these Web APIs, mobile and desktop application
developers can provide the functionality of many providers’
services in their consumer applications. The provided services
range from social activities (e.g., share on Facebook or Twitter
over various detailed information supplies (e.g., maps, events,
or weather), to highly specific needs (e.g., multimedia ma-
nipulation or language analysis). However, integrating these
APIs into an application requires manual development work,
such as writing the HTTP requests that need to be executed
and parsing the returned HTTP responses. Instructions on how
to write this code can often be found on the API’s website in
the form of human-readable API documentation.

Part of an automated solution to this problem is machine-
readable documentation. On the lowest level, this documenta-
tion describes the message format and modalities; on a higher
level, however, it also explains the specific functionality of-
fered by the Web API, so a machine can autonomously decide
whether the API is appropriate for a certain use case. In the
past, we have proposed such a description method called
RESTdesc, which offers an efficient way to capture the func-
tionality of Web APIs [7,8] that is specifically tailored to
REST or hypermedia APIs [6].

The other part of the solution is automated composition
and integration, which is the application of machine-readable
documentation to a specific problem. In other words, while
programmers today need to interpret the human-readable doc-
umentation to choose an API and to implement it in an appli-

cation, with automated integration, a machine would interpret
machine-readable documentation, choose an API and interact
with this API at runtime without human intervention. An im-
portant step in this direction is the automated matching and
composition of Web APIs. In this paper, we therefore present
an automated composition method for RESTdesc-described
Web APIs, building upon our previous work.

2 Related work

RESTdesc is a Web API description method that captures
the functionality of Web APIs, describing an HTTP request
and its preconditions and postconditions [7,8]. RESTdesc
descriptions are expressed in Notation3, which is a minor
subset of RDF, the main Semantic Web language.

Composition of Web interfaces has mostly been discussed
in the context of so-called “Big Web services”, i.e., services
that do not conform to the REST principles [3], but rather
employ HTTP as a tunneling protocol. Their composition,
however, requires specific software; correctness verification
is an issue, and so is scalability [4]. In contrast, our method
does not require specific software since RESTdesc has been
designed to work with generic reasoners.

3 Web API composition

Two partial problems are involved in creating a composition:
Matching is the decision whether the invocation of a Web
API call A,, is sufficient (and somehow necessary) to
execute another call A,,. In logical terms, this means:
A (ciscj) = Ay(c,cp) with = A, (¢;, ¢1)
So the postconditions ¢; of calling A,,, with precondi-
tions ¢; enable calling A,,, whereas the preconditions ¢;
alone are not sufficient to call A4,,.

Chaining is the repeated application of matching, to generate
a chain of Web API calls A, ... A, where every two
successive calls match, i.e., Vim < n match(A,,, A, 1).

However, in the most general sense, a composition is not

a chain of calls, but rather a graph in which multiple calls can

provide the preconditions for another call. This indicates that

the problem of composition is more complicated than simply
determining all matches and identifying chains.

Instead, we define a composition as an acyclic graph of
Web API calls and distinguish between two kinds of composi-
tions. In exploration-based composition, the task is to identify
graphs of API calls that are possible given the current appli-
cation state. In goal-driven compositions, an external agent
(such as the user) indicates a certain goal that needs to be
accomplished, and the composition is then a plan that satisfies
this goal’s conditions, starting from the current state.



4 Proof-based composition

The composition method we present in this paper is based
on the close relationship of logic implication and composi-
tion, and the fact that RESTdesc descriptions are in fact logic
implication rules. The generalized notion of compositions as
a graph can be expressed as an implication:
An(cna C’/I’L) ARERYA Am(cmv Cfrn) = Ak(ckv C;c)
or indeed, as logical entailment:
An(cnv C;L)7 LR Am(cm7 Cfm) - Ak(ck7 C;C)
In the above case, the Web API calls A,, to A,,, are necessary
to execute A;. Stated differently, A, is provable with A,,
to A,,,. This means that the generation of a composition essen-
tially comes down to generating a proof that the invocation of
selected Web APIs leads to the fulfilment of a predefined goal,
wherein a goal is defined as a desired end state entailed by the
combined postconditions. Concretely, to determine whether
a goal g can be reached from an initial state ¢, we should
construct a series of implications formed by Web API calls,
which will form an implication graph that proves g from <.
RESTdesc describes Web APIs indeed as logic rules, ex-
pressed in Notation3, which has an associated logic frame-
work called N3Logic [1]. Therefore, composing RESTdesc-
described APIs is possible by building an N3Logic proof with
these descriptions. Several generic Notation3 reasoners exist
and due to the design of RESTdesc descriptions, they all are
natively capable of generating RESTdesc compositions.
The reasoner is supplied with the following inputs:

The initial state as an RDF document, which describes cur-

rently available resources and their state.
Web API descriptions in RESTdesc format of various APIs

the user has access to.
The goal state (optional) as an RDF document, which de-

scribes the desired resource state.
If the goal state is omitted, the composition will be exploration-
based, meaning the reasoner will construct compositions
where the initial state is a precondition (possibly limited to
a certain number of compositions or to compositions of a cer-
tain length). If the goal state is available, the composition will
be goal-driven, meaning that only compositions will be found
that achieve the specified goal.

5 Evaluation

An important question is whether the proposed solution per-
forms well on a Web scale, thus with hundreds of Web APIs
and for compositions of various lengths. We have conducted
experiments with the EYE and cwm reasoners using a bench-
mark suite [5] that is freely available online.® The benchmark
consists of a description generator, which purposely creates
descriptions that match on a given initial and goal state, and
a benchmarking utility that evaluates the performance.

The results indicated that proof-based composition is pos-
sible even for complex compositions (e.g., with more than

} http://github.com/RubenVerborgh/RESTdesc—
Composition—-Benchmark

1,000 API calls). The fastest reasoner in the test, EYE, was
able to create most compositions in well under one second on
an average consumer computer.

6 Conclusion and future work

In this paper, we have presented a reasoner-based composition
algorithm for RESTdesc-described Web APIs. A performance
evaluation has indicated that our method is sufficiently fast to
perform on a Web scale.

We currently have an implementation in the domain of
sensor networks [5], but plan to test this approach to other
domains. One interesting direction we plan to investigate is
multimedia analysis and adaptation, thus communicating with
multimedia algorithms through Web APIs and then chaining
them together to perform complex actions in an automated
way, where compositions are dynamically generated according
to the user’s needs.

Acknowledgements

The described research activities were funded by Ghent Uni-
versity, the Institute for the Promotion of Innovation by Sci-
ence and Technology in Flanders (TwT), the Fund for Scientific
Research Flanders (FWO Flanders), and the European Union.

References

1. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.:
N3Logic: A logical framework for the World Wide Web. Theory
and Practice of Logic Programming 8(3), 249-269 (2008), http:
//arxiv.org/abs/0711.1533

2. DuVander, A.: 8,000 APIs: Rise of the enterprise (Nov
2012), http://blog.programmableweb.com/2012/11/26/
8000-apis-rise-of-the-enterprise/

3. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web
architecture. Transactions on Internet Technology 2(2), 115-150
(May 2002), http://dl.acm.org/citation.cfm?id=514185

4. Milanovic, N., Malek, M.: Current solutions for Web service
composition. [EEE Internet Computing 8(6), 51-59 (Nov 2004)

5. Verborgh, R., Haerinck, V., Steiner, T., Van Deursen, D.,
Van Hoecke, S., De Roo, J., Van de Walle, R., Gabarr$ Vallés,
J.: Functional composition of sensor Web APIs. In: Proceedings
of the 5th International Workshop on Semantic Sensor Networks
(Nov 2012), http://ceur-ws.org/Vol-904/paper6.pdf

6. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S.,
Gabarrd Vallés, J., Van de Walle, R.: Functional descriptions
as the bridge between hypermedia APIs and the Semantic Web.
In: Proceedings of the Third International Workshop on REST-
ful Design. pp. 33—40. ACM (Apr 2012), http://www.ws-
rest.org/2012/proc/ab-9-verborgh.pdf

7. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de
Walle, R., Gabarr6 Vallés, J.: Description and Interaction of REST-
ful Services for Automatic Discovery and Execution. In: Proceed-
ings of the FTRA 2011 International Workshop on Advanced
Future Multimedia Services (Dec 2011)

8. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de
Walle, R., Gabarré Vallés, J.: Capturing the functionality of
Web services with functional descriptions. Multimedia Tools and
Applications (2013), http://www.springerlink.com/index/
d041t268487gx850.pdf


http://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark
http://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark
http://arxiv.org/abs/0711.1533
http://arxiv.org/abs/0711.1533
http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-the-enterprise/
http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-the-enterprise/
http://dl.acm.org/citation.cfm?id=514185
http://ceur-ws.org/Vol-904/paper6.pdf
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://www.springerlink.com/index/d041t268487gx850.pdf
http://www.springerlink.com/index/d041t268487gx850.pdf

	Proof-based Automated Web API Composition and Integration

