
Semantic Description of rest apis

Ruben Verborgh1, Andreas Harth2, Maria Maleshkova2,
Steffen Stadtmüller2 Thomas Steiner3, Mohsen Taheriyan4, and

Rik Van de Walle2

1 Ghent University – iMinds, elis – Multimedia Lab, Belgium
2 Institute aifb, Karlsruhe Institute of Technology, Germany
3 lsi Department, Universitat Politècnica de Catalunya, Spain

4 Information Science Institute, University of Southern California, usa

1 Introduction

The rest architectural style assumes that client and server form a contract
with content negotiation, not only on the data format but implicitly also on the
semantics of the communicated data, i.e., an agreement on how the data have to
be interpreted [55]. In different application scenarios such an agreement requires
vendor-specific content types for the individual services to convey the meaning of
the communicated data. The idea behind vendor-specific content types is that
service providers can reuse content types and service consumers can make use of
specific processors for the individual content types. In practice however, we see
that many restful apis on the Web simply make use of standard non-specific
content types, e.g., text/xml or application/json [33]. Since the agreement on the
semantics is only implicit, programmers developing client applications have to
manually gain a deep understanding of several APIs from multiple providers.

Common Web apis are typically either exclusively described textually5, or
far less frequently—and usually based on third-party contributions—a machine-
readable wadl [18] api description exists6. However, neither human-focused tex-
tual, nor machine-focused wadl api descriptions carry any machine-processable
semantics, i.e., do not describe what a certain api does. Instead, they limit
themselves to a description of machine-readable in- and output parameters in
the case of wadl, or a non-machine-readable prose- and/or example-driven de-
scription of the api in the case of textual descriptions. While this may suffice the
requirements of developers in practice, the lack of semantic descriptions hinders
many more advanced use cases such as api discovery or api composition.

Machine-interpretable descriptions can serve several purposes when developing
client applications:

– One can generate textual documentation from the standardised machine-
interpretable descriptions, which leads to a more coherent presentation of
the APIs, similar to what JavaDoc has achieved in the Java world (see also
Knuth’s idea of literal programming [22]).

5 For example, the Twitter rest api: https://dev.twitter.com/docs/api
6 A large archive of wadl descriptions is available on GitHub: https://github.com/
apigee/wadl-library

https://dev.twitter.com/docs/api
https://github.com/apigee/wadl-library
https://github.com/apigee/wadl-library


2 Ruben Verborgh et al.

– A standardised way to access rest APIs introduce a higher degree of au-
tomation for high level tasks such as composition.

– Machine-interpretable descriptions facilitate a more structured approach to
developing APIs, which means that automated tools can check coherence
and the RESTful-ness of an API (e.g., according to the Richardson Maturity
Model7).

In a restful interaction with Web resources, only the constraint set of http
methods can be applied to the resources. The semantics of the http methods itself
is defined by the ietf [12] and do not need to be explicitly described for individual
resources. We can distinguish between safe and non-safe methods, where safe
methods guarantee not to affect the current state of resources. Additionally, some
of the methods require additional input data to be provided for their invocation.
The communicated input data can be subject to requirements that need to be
described to allow an automated interaction. Furthermore, the effect on the
resources state of an application of a non-safe method has needs to be assessable
before the actual invocation to allow clients to decide how to interact with
the resources. The effected change of resources after applying an http method
can also depend on the communicated input data. This dependency between
communicated input and the resulting state of resources has also to be subject
of a description.

In the chapter we classify the various approaches for providing machine-
interpretable descriptions of Web APIs. Chapter 2 surveys lightweight semantic
descriptions. Chapter 3 introduces descriptions based on graph patterns (a subset
of the SPARQL query language for RDF, a graph-structured data format). Chap-
ter 4 covers logic-based descriptions. Chapter 5 covers JSON-based descriptions.
Chapter 6 contains a description of two tools for annotating existing APIs, and
Chapter 8 concludes.

2 Lightweight semantic descriptions

2.1 Syntactic rest api descriptions

Web services enable the publishing and consuming of functionalities of existing
applications, facilitating the development of systems based on decoupled and
distributed components. wsdl [58], [7] is an xml-based language for describing
the interface of a Web service. A wsdl service description specifies: 1) the
supported operations for consuming the Web service; 2) its transport protocol
bindings; 3) the message exchange format; and 4) its physical location. In this
way, the wsdl description contains all information necessary for invoking a
service and since it is xml-based, conforming to the wsdl xml schema, it is also
machine-processable.

wsdl Similarly, to Web services, which provide access to the functionality of
existing components, Web apis and Web applications conforming to the rest

7 http://martinfowler.com/articles/richardsonMaturityModel.html

http://martinfowler.com/articles/richardsonMaturityModel.html


Semantic Description of rest apis 3

paradigm, provide access to resources by using the www as an infrastructure
platform. Based on this parallel between the two types of services, wsdl was
extended to Version 2.0 [58], which can also be used for formally describing
restful services. As a result wsdl is a machine-processable, platform- and
language-independent form of describing Web services and restful services alike.

The difficulty of using wsdl for restful services, is that it was not espe-
cially designed for resource-oriented services and as a result, everything has
to be described in an operation-based manner. In addition, wsdl introduces
some difficulties with specifying the message exchange format and limits http
authentication methods. Moreover, the most important drawback is that it lacks
support for simple links. There is no mechanism in wsdl 2.0 to describe new
resources that are identified by links in other documents. However, one of the
most important characteristic of restful services is that they consist of collections
of interlinked resources. Finally, the adoption of wsdl as means for describing
Web apis would requite that all providers update or completely change their
websites with documentation, moving away for using only text in html form.
Similarly developers would need to learn to deal with wsdl instead of simply
reading a natural language description.

wadl In contrast to wsdl, the Web Application Description Language
(wadl, [18]) was especially designed for describing restful services in a machine-
processable way. It is also xml-based and is platform and language independent.
As opposed to wsdl, wadl models the resources provided by a service, and the
relationships between them in the form of links. A service is described using a set
of resource elements. Each resource contains descriptions of the inputs and method
elements, including the request and response for the resource. In particular, the
request element specifies how to represent the input, what types are required
and any specific http headers. The response describes the representation of the
service’s response, as well as any fault information, to deal with errors.

Currently, neither wadl nor wsdl are widely accepted and used for Web
apis and restful services. A Google search for wadl files returns only 49 unique
results 8, while from the popular Web 2.0 applications only delicious 9 and
YahooSearch 10 have wadl descriptions. The main difficulty of using wadl
descriptions is that they are complex, in comparison to text-based documentation,
and require that developers have a certain level of training and tool support that
enables the application development on top of wadl. This complexity contradicts
with the current proliferation of Web apis, which can be greatly attributed to
simplicity and direct used of the infrastructure provided by the Web, which
enable the easy retrieving of resources only thought an http request, directly in
the Web browser.

Web apis evolve rather autonomously without conforming to a shared set
of guidelines or standards, especially evident by the fact the documentation
is usually given in natural language as part of a webpage. The developer has

8 Search done on October 5th, 2009
9 http://delicious.com/

10 http://search.yahoo.com/



4 Ruben Verborgh et al.

to decide what structure to use and what information to provide. As a result,
everyone who is able to create a Web page is also able to create a Web api
description. However, plain text/html descriptions, in contrast to wsdl and
wadl descriptions, are not meant for automated machine-processing, which means
that if developers want to use a particular service, they have to go to an existing
description Web page, study it and write the application manually. Therefore,
current research proposes the creation of machine-interpretable descriptions on
top of existing html descriptions by using microformats [19]. Microformats
offer means for annotating human-oriented Web pages in order to make key
information automatically recognisable and processable, without modifying the
visualization or the content.

hrests One particular approach for creating machine-processable descrip-
tions for restful services by using microformats is hrests (html for restful
Services) [24]. hrests enables the marking of service properties including oper-
ations, inputs and outputs, http methods and labels, by inserting html tags
within the html. In this way, the user does not see any changes in the Web
page, however, based on the tags, the service can be automatically recognized
by crawlers and the service properties can directly be extracted by applying a
simple xsl transformation. The result is an html page that also contains the
syntactical information of the described Web api and therefore, no longer relies
solely on human interpretation.

rdfa An alternative to using hrests is offered by rdfa [1] that enables the
embedding of rdf data in html. rdfa is similar to using microformats, but is
somewhat more complex and offers more html marking options, as opposed
to hrests. Approaches, based on making existing restful service descriptions
machine-processable by using html tags are simpler and more lightweight as
opposed to wsdl and wadl. In addition, as already mentioned, they can be
applied directly on already available descriptions, rather then creating new service
descriptions from scratch. The adoption by developers is also easier, since the
creation of a machine-processable restful service description is equivalent to
Web content creation or modification.

2.2 Microwsmo / sa-rest

In contrast to research in the area of Semantic Web Services, which has been
quite prolific, the number of semantic frameworks targeted at capturing Web
api characteristics is relatively limited. Web apis have only recently achieved
greater popularity and wider use, thus raising the interest of the research com-
munity. In this section we discuss the two main approaches – Microwsmo and
sa-rest, aiming to support a greater level of automation of common service tasks
through employing semantics. We also consider further description languages and
ontologies, including rell and rosm.

Microwsmo Microwsmo [23] is a formalism for the semantic description of
Web apis, which is based on adapting the sawsdl [11] approach. Microwsmo
uses microformats for adding semantic information on top of html service
documentation, by relying on hrests for marking service properties and making



Semantic Description of rest apis 5

the descriptions machine-processable. It uses three main types of link relations:
1) modelReference, which can be used on any service property to point to
appropriate semantic concepts identified by uris; 2) liftingSchemaMapping
and 3) loweringSchemaMapping, which associate messages with appropriate
transformations (also identified by uris) between the serialization format such
as xml and a semantic knowledge representation format such as rdf. Therefore,
Microwsmo, based on hrests, enables the semantic annotation of Web apis in
the same way in which sawsdl, based on wsdl, supports the annotation of Web
services.

Fig. 1. Unifying sawsdl and Microwsmo through wsmo-Lite

In addition, Microwsmo can be complemented by the wsmo-Lite service
ontology specifying the content of the semantic annotations (see Figure 1 11).
Since both Web apis and wsdl-based services can have wsmo-Lite annota-
tions, this provides a basis for integrating the two types of services. Therefore,
wsmo-Lite enables unified search over both Web apis and wsdl-based services,
and tasks such as discovery, composition and mediation can be performed based
on wsmo-Lite, completely independently from the underlying Web service tech-
nology (wsdl/soap or rest/http).

sa-rest Another formalism for the semantic description of restful services
is sa-rest [42], which also applies the grounding principles of sawsdl but instead
of using hrests relies on rdfa [1] for marking service properties. Similarly to
Microwsmo, sa-rest enables the annotation of existing html service descrip-
tions by defining the following service elements: input, output, operation, lifting,
lowering, or fault and linking these to semantic entities. The main differences
11 http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=

semanticweb

http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb


6 Ruben Verborgh et al.

between the two approaches are not the underlying principles but rather the
implementation techniques. In addition, Microwsmo aims to add semantics as
means for Web service automation, while sa-rest is more oriented towards
enabling tool support in the context of service discovery and composition by
mashup or smashup [41].

2.3 Minimal service model

The Minimal Service Model (msm) represents an operation-based approach
towards describing Web apis. It is is a simple rdf(s) ontology that supports the
annotation of common Web api descriptions. It also aims to enable the reusability
of existing Semantic Web service approaches by capturing the maximum common
denominator between existing conceptual models for services. Additionally, as
opposed to most semantic Web services research up to date, msm targets to
support both traditional Web services, as well as Web apis with procedural view
on resources, so that they can be handled in a unified way.

Originally the msm was introduced together with hrests [24], aiming to cover
for the fact that Web api descriptions do not typically have any structure in terms
of the resources handled nor the operations exposed. Although its initial purpose
was to provide structure to hrests, it has been subsequently adjusted and up-
dated to its current form, in order to provide means for integrating heterogeneous
services (i.e., wsdls and Web apis), and together with wsmo-Lite it has been
used as a means to facilitate a common framework covering the largest common
denominator of the most used Semantic Web service formalisms on the Web.
On the basis of msm and wsmo-Lite, generic publication and discovery machin-
ery has been developed that supports sawsdl, wsmo-Lite, hrests/Microwsmo,
and owl-s services [38]. The Semantic Web Services exposed by this infrastruc-
ture [37] put the emphasis on reducing the complexity of conceptual models and
integrating services with existing Linked Data [6]. This integration serves both
as a means to simplify the creation and management of Semantic Web Services
through reuse, as well as it provides a new view over semantic Web services
understood as a means to support the generating and processing Linked Data
on the Web. Subsequent work around the Minimal Service Model is focused on
supporting the invocation and authentication of Web apis [31,32].

The original msm [24] defined a Web api in terms of a Services that has a
number of Operations, which have an Input, an Output, and Faults. However, the
original msm, which was used as a basis for sa-rest [42] and Microwsmo [23],
fails to capture some significant parts of the descriptions, such as optional, default
and mandatory parameters, which can have a crucial effect on discovery and
invocation. In addition, it does not enable the description of the inputs, parts
of the input, and parts of the parts of the input. As a result, the msm has been
extended [38] to support further service characteristics.

The msm, in its current version [38], is visualized in Figure 2. The msm, de-
noted by the msm namespace, defines Services which have a number of Operations.
Operations in turn have input, output and fault MessageContent descriptions. A
MessageContent may be composed of MessageParts, which can be mandatory



Semantic Description of rest apis 7

Fig. 2. Minimal Service Model

or optional. The intent of the message part mechanism is to support finer-grain
discovery based on message parts and allowing to distinguish between mandatory
and optional parts.

The msm is used as the core model for describing Web apis, while supplemen-
tary models are defined for capturing details that are of particular relevance for
the separate service tasks. As part of identifying extensions to the msm, work on
supporting the automation of authentication [32] was conducted.

2.4 Further semantic approaches

rosm The Resource-Oriented Service Model (rosm, [14]) ontology is a lightweight
approach to the structural description of resource-oriented restful services,
compatible with wsmo-Lite annotations. It enables the annotation of resources
belonging to a service. In turn the resources can be described as being part
of collections and having addresses (uris) serving as endpoints for access and
manipulation. The organization of resource in collections, which again belongs
to a service, allows capturing an arbitrary number of resources and attaching
service semantics to them following the sawsdl approach.

Furthermore, resources can have certain http methods associated with them,
which define how it is possible to interact with a resource, which are connected
through an operation. These operations are modeled in a much-more fine-grained
way, since they basically only have to support the uniform interface of http. In
addition, rosm 12 enables the explicit modeling of requests and responses with
12 http://www.wsmo.org/ns/rosm/0.1/

http://www.wsmo.org/ns/rosm/0.1/


8 Ruben Verborgh et al.

their associated aspects (e.g., parameters or response codes). In summary, rosm
represents a simple ontology for describing resource-centered services, in terms
of resources, collection of resources, addresses and http methods. The specific
semantics of the rosm annotations can be described by linking to the wsmo-Lite
ontology.

Servont is an ontology-based hybrid approach where different kinds of match-
making strategies are combined together to provide an adaptive, flexible and
efficient service discovery environment [9]. Semantic-enriched frameworks are
considered a key issue to enforce timely discovery and dynamic composition of
services. In contrast, the ServFace project aims at creating a model-driven service
engineering methodology for an integrated development process for service-based
applications 13. Finally, the Simple Semantic Web Architecture and Protocol
(sswap) is the driving technology for the iPlant Semantic Web Program 14. It
combines Web service functionality with an extensible semantic framework to
satisfy the conditions for high throughput integration [15]. sswap originates from
the Semantic moby project, which is a branch of Biomoby project [57]. Using
sswap, users can create scientific workflows based on the discovery and execution
of Web services and restful services.

3 sparql-based descriptions

Following the motivation to look beyond the exposure of fixed datasets, an
extension of Linked Data with rest technologies has been proposed and explored
for some time [3,56,25,44,53,36]. These approaches extend the traditional use
of http in Linked Data, consistent with rest, by allowing all http operations
to be applied to Linked Data resources. rest services in this context are often
perceived rdf prosumers, i.e., the state of resources is made available encoded in
rdf, at least as an alternative via Content Negotiation. Clients can interact with
Linked Data resources by submitting rdf input data with http methods (e.g.,
POST, PUT) resulting in the manipulation or creation of resources. The output data
a client receives after the successful submission of data describes the effected
state change of resources (i.e., their new content after creation or manipulation)
and is serialized in rdf as well.

Such rest services contribute to the Web of Data by interlinking output data
with existing Linked Data sets.

restful Linked Data resources consider how the data that results from
computation over input can carry explicit semantics and base their service
descriptions on the notion that Linked Data provides a description for resources’
input and output requirements: the graph patterns provided by the sparql query
language or the n notation. Graph pattern provide the advantage of a more
thorough description of what should be communicated, familiarity to Linked
Data producers and consumers, and the possibility for increased tool support.

13 http://www.servface.eu/
14 http://sswap.info/

http://www.servface.eu/
http://sswap.info/


Semantic Description of rest apis 9

The rational behind the descriptions for restful Linked Data resources is
that the current state of a resource can be retrieved with an httpGET, while the
data exchange that constitutes a manipulating interaction with a resource is
described with two graph patterns:

– A graph pattern that describes the rdf input data that is submitted to a
resource (e.g., with httpPOST), which is necessary to invoke the manipulation.

– A graph pattern that describes the rdf output data the client receives after
a successful call.

The description implies that the input pattern has to match the input data to
invoke the service and the output pattern will match the output data returned
by the service.

To illustrate the use of graph pattern-based io descriptions we introduce an
example based on an api of a social network platform. A common feature of social
networks is to post a message to the timeline of a user. The approach in the context
of Linked Data would be to wrap this call to provide the information in rdf,
reusing existing vocabularies. Here the natural choice is the sioc vocabulary15.

The description of a resource representing the timeline of a user, would make
explicit as required input for a httpPOST call the content of the message and
its creator identified in that social network. Furthermore the output would be
described as the created message with enriched with additional information (e.g.,
the creation date). A client would receive data matching this pattern together
with the http status code indicating the success of the call. The resulting input
and output descriptions for the Linked api are represented in Table 1.

Input: { ?post a sioc:Post.

?post sioc:content ?content.

?post sioc:has-creator ?user. }

Output: { ?post sioc:content ?content.

?post dcterms:created ?date. }

Table 1. Example description for a timeline resource in a social network

Note that the reuse of the variables ?post and ?content across input and
output implies that this variable will have the same binding in the output as
provided in the input. In sparql terms these would be ‘safe variables’ if we
considered the service to be a sparqlCONSTRUCT query from the input to the output
patterns. Variables in the output pattern that do not appear in the input pattern
are bound by the functionality of the resource, i.e., the binding is a result of the
manipulation or creation of a resource.

Graph pattern based descriptions allow for a thorough descriptions of what
a client has to communicate to successfully interact with a restful Linked
15 http://sioc-project.org/ontology/

http://sioc-project.org/ontology/


10 Ruben Verborgh et al.

Data resource. The output descriptions that share share variables with the
input descriptions allow clients to anticipate the result of their interaction with
respect to the input they intented to provide. Such an anticipation is due to
the circumstance that the actual output message of an interaction is intented to
convey the effected state change of an interaction. The predictability of effects
of manipulating actions is essential to enable (semi-)automated clients that use
Linked Data rest services.

4 Logic-based descriptions

Since its inception, the Semantic Web has always had a strong link with logic [5].
The impact of logic is visible in essential building stones such as rdf [20], whose
open world assumption prohibits conclusions based on the absence of certain
triples. Two logic families are predominant on the Semantic Web: description
logic, the underlying model of owl [35], is the most widespread, followed by
first-order logic, which is typically expressed in extensions of rdf with rules.
Description logic is in essence a decidable fragment of first-order logic, at the
cost of a loss in expressivity.

This reduced expressivity is a motivator for los and lids to adopt sparql,
and the reason for a few other methods use rule-based expression languages.
For example, in owl-s [34], one of the early semantic description formalisms for
traditional Web services, rule languages such as kif or swirl have to be used
to express various aspects that extend beyond the expressivity of rdf. These
languages capture expressions for pre- and postconditions, results, and effects of
a Web service invocation. In general, rules are a straightforward mechanism to
express dynamic relationships, such as those that occur with Web apis.

4.1 restdesc

restdesc [53,54] is a logic-based description method that focuses on exposing the
functional aspect of Web apis in machine-processable form. Concretely, restdesc
descriptions are rules expressed in the Notation3 language (n, [4]), which adds
support for variables and quantification to rdf. The latter is a prerequisite to
natively describe statements such as “all requests to y result in x”, which is not
directly supported in rdf (i.e., only through the use of modeling vocabularies).
In fact, restdesc uses quantification to express functionality as follows:

∀x preconditions(x) ⇒ ∃r(request(r, x) ∧ postconditions(x))

Herein, the predicates are expressed as rdf graphs, called formulae in n. Rea-
soners interpret the above as “for every situation x where certain preconditions
are met, there exists a specified request r that makes certain postconditions true.”
Moreover, for specific situations xn, reasoners can instantiate the above rule,
thereby creating an rdf representation of a concrete http request rn, which can
be executed by any rdf-compatible http client.



Semantic Description of rest apis 11

Descriptions can be used to express the effects that occur as a result of
a POST request, including the description of that request itself. Representations
are not described, as restdesc aims to be representation-independent, but it can
describe properties of these representations. This is not unlike the graph patterns
used in sparql-based methods (see Section 3), but represented in a syntax
that integrates the request description. restdesc descriptions can also be useful
to describe requests with safe methods such as GET, in order to explain what
properties the response will satisfy, again without constraining the representation.
This can be useful in two cases: a) if the client does not want to retrieve the
resource (for instance, if there are too many) or b) if the resource does not exist
yet, but can be created as the result of another action. In both cases, clients can
then predict certain properties of the resource, without actually accessing it.

Since restdesc descriptions are expressed as rules, they inherit the logical
functionality, in particular the chaining property:

P ⇒ Q, Q ⇒ R ` P ⇒ R

Therefore, existing Semantic Web reasoners with n support can create compo-
sitions of restdesc-described Web apis by chaining restdesc descriptions [51],
either in a forward or backward (goal-driven) manner. This enables agents to
respectively discover possible actions and to find a sequence of actions to satisfy
a predetermined goal.

Further work on restdesc includes the incorporation of quality parameters,
possibly subjective, in Web api descriptions [52].

5 json-based descriptions

So far we have explored solutions that are directly based on Semantic Web
technologies. However, many Web developers are reluctant to integrate rdf,
sparql or N3 in their applications. Lanthaler and Gütl provide three reasons for
what they call semaphobia [27]. Firstly, they observe that the perceived complexity
of the Semantic Web, in combination with its background in artificial intelligence,
makes developers assume integration will be difficult. Furthermore, some of them
are unsure whether the integration cost will be worthwhile. After all, the Semantic
Web is sometimes regarded as a solution in search for a problem, suffering from
the chicken-and-egg syndrome and thus still waiting for a killer application
(although the wc maintains a list of case studies and use cases [2]). Finally, the
Semantic Web is often incorrectly considered a disruptive technology that is hard
to implement in an evolving ecosystem [43].

Whatever the reasons for semaphobia, adoption is often a decisive factor for
technologies. Therefore, description formats anchored on a technology Web devel-
opers are already familiar with have a head start. As of 2012, more than 44% of
all apis on ProgrammableWeb, the largest api index [10], communicate in json.
json is the JavaScript Object Notation language, which quickly became popular
on the Web as it was natively parsed by JavaScript, the only scripting language
supported by the majority of browsers. Its simplicity and extensibility make it
also an interesting target for many other environments [40].



12 Ruben Verborgh et al.

5.1 seredasj

As the letter j in its name suggests, seredasj (semantic restful data services,
[27]) is a semantic description language format expressed in json. The motivation
behind seredasj is to provide simpler descriptions (in contrast to owl-s [34] or
wsmo [30]) that contain necessary semantics (such as sa-rest and Microwsmo,
see Section 2.2) in a widely used machine-targeted media type (application/json).
seredasj defines a syntactic structure for json documents and a corresponding
interpretation. It enables the representation of hypermedia links, which are not
natively present in json. It is, however, not a strictly validated approach such as
json schema [60], which enforces the presence of certain elements and properties
in a json document.

The authors of seredasj put forward three use cases [27]. Firstly, they
envision it as a means of creating documentation, both in machine-processable
and human-readable form. The human-readable counterpart is generated from
labels of predicates defined in ontologies, which are referenced by uri in the
seredasj description. The benefit here is reuse—on the one hand by having
a single description for humans and machines, and on the other hand by referencing
to existing ontological definitions. Secondly, the goal is to enable more flexibility in
Web api clients. By adding support for hyperlinks to json, seredasj descriptions
become a hypermedia format through which clients can navigate a Web api in
accordance with the hypermedia constraint [13]. Thirdly, seredasj aims to
facilitate data integration, as its annotations enable the transformation of json
into rdf. However, as we will argue below, other means to this end exist, so
employing seredasj specifically for this last use case might prove suboptimal.

Generally speaking, one seredasj description is created per resource type. As
seredasj currently only supports json, it is assumed that resources of this type
have at least a json representation. The accompanying seredasj description
documents the elements in these json documents by mapping them to predicates
of ontologies in rdf format. This principle can be applied to the whole hierarchy
of the document, including arrays, which represent multi-valued properties.
Every subtree can additionally be associated with an rdf type. Next to this,
seredasj describes the controls to navigate through the Web api in the form of
uri templates [17], as well as the rdf predicates they correspond to, capturing
their meaning. seredasj can furthermore detail the format of entities for use in
PUT or POST requests.

Part of the functionality of seredasj is currently offered by json-ld [28],
whose specification is currently a wc editor’s draft [45]. json-ld similarly
provides predicate and type annotations that allow json data to be translated
into rdf, but these annotations are included in the json document itself as
opposed to a separate seredasj description document. However, the question
arises whether it would not be more beneficial for servers to provide separate
json and rdf representations of a resource, allowing clients to indicate through
content negotiation with which representation they would like to proceed.

Further work on seredasj includes an architecture to integrate Web apis
into the Web of Data, which makes use of seredasj descriptions [29].



Semantic Description of rest apis 13

6 Tools

In previous sections, different solutions for describing semantics of rest apis
have been investigated. However, there are some obstacles preventing them from
being widely adopted. First, writing semantic service descriptions by hand is a
time consuming and tedious task. Furthermore, to model apis, most of these
approaches require some degree of expertise in Semantic Web languages such
as rdf, sparql, and n in addition to the domain knowledge. Tools can play a
significant role by providing a user interface to rapidly build semantic descriptions,
making the complexity of formal specification transparent to the user.

The here introduced formalisms, including Microwsmo, sa-rest and the msm,
which make html service descriptions machine-processable and enable the adding
of semantic information, provide the means for creating semantic descriptions of
Web apis. However, without supporting tools or guidelines, developers would have
to modify and enhance the descriptions manually by using a simple text/html
editor. In addition, the complete annotation process would have to be completed
manually, if there are no tools, which enable the search for suitable domain
ontologies or the reuse of annotations of previously semantically described services.

6.1 Karma

Karma16 [48] is a Web-based framework for integrating structured data from a
variety of sources. Users can load data from relational databases, spreadsheets,
delimited text files, kml (Keyhole Markup Language) files, and semi-structured
Web pages. Users can clean and normalize data with a programming by example
interface [59]. Then, Karma semi-automatically builds a semantic model of the
source by mapping it a domain ontology chosen by the user [21]. Karma models
each column in terms of the classes and data properties defined in the ontology,
and models the relationships among columns using object properties. Once data
is modeled, Karma can translate the data into a variety of formats including rdf.
The semantic models also enable Karma to integrate information from multiple
sources and to invoke services to compute new information.

The main goal in Karma is to make it easy and efficient for users to perform
all information integration tasks. Karma enables users to perform operations on
a small set of input instances, and then learns from these examples a general
procedure that it can apply to all inputs. Compared to other data integration
tools, Karma significantly reduces the time and effort needed to perform the
data integration tasks. Recently, Karma has been extended with the capability to
build semantic descriptions of Web apis as a foundation to compose data sources
and Web services [46]. In this section, we explain how it enables users to rapidly
generate semantic service descriptions.

To model services, Karma first asks the user to provide samples of the api
invocations urls. This conforms to the main idea of Karma that examples are
the basis to carry out the tasks. These sample urls can also be automatically
16 http://www.isi.edu/integration/karma

http://www.isi.edu/integration/karma


14 Ruben Verborgh et al.

extracted from the documentation pages of the apis. Next, the user interactively
builds a semantic model of the api by mapping the service inputs and outputs to
the domain ontology. Building semantic models is the central part of the approach
and it is very similar to how Karma models the data from other sources. Once
the semantic model is built, Karma formalizes it using a new expressive rdf
vocabulary that represents both the syntactic part and the functionality of the
api. Karma stores the service specifications in a triple store, enabling users to
query the service models using sparql. Finally, Karma deploys a Linked api that
consumes and produces Linked Data. The Linked api provides rest interfaces
enabling users to send rdf data in the body of a POST request and get back rdf
output linked to the input. In the following paragraphs, we explain each step in
more detail.

The input to the system are examples of the api requests. Karma parses the
urls and extracts the individual input parameters along with their values. For
each invocation example, Karma calls the api and extracts the output attributes
and their values from the xml or json response. Then, Karma joins the input
and the output values into one table and shows that in a worksheet. Karma treats
this table as a regular data source and applies its source modeling technique to
build a semantic model of the api.

The goal of semantic modeling is to express the api functionality in terms
of classes and properties defined in a domain ontology. The modeling process
consists of two steps. The first step is to identify the type of data by assigning a
semantic type to each column. A semantic type can be either an ontology class
or a pair consisting of a data property and its domain. Karma uses a conditional
random field (crf) [26] model to learn the assignment of semantic types to
columns of data [16]. Karma uses this classifier to automatically suggest semantic
types for new data columns. If the correct label is not among the suggested
labels, users can browse the ontology through a user friendly interface to find
the appropriate type. The system re-trains the crf model after these manual
assignments.

The second part of the modeling process is to extract the relationships between
the inferred semantic types. Given the domain ontology and the assigned semantic
types, Karma creates a graph that defines the space of all possible mappings
between the source and the ontology [21]. The nodes in this graph represent
classes in the ontology connected by direct and inferred properties. Once Karma
constructs the graph, it computes the api model as the minimal tree that connects
all the semantic types. It is possible that multiple minimal trees exist, or that
the correct model of the data is captured by a non-minimal tree. In these cases,
Karma allows the user to interactively impose constraints on the algorithm to
build the correct model. Karma provides an easy-to-use gui where the user can
adjust the relationships between the columns.



Semantic Description of rest apis 15

The models that Karma builds are themselves represented in rdf according
to an ontology17 reusing existing ontologies such as swrl18 and hrests19 [46].
This ontology is semantically richer than wsmo-Lite20 and Minimal Service
Model (msm) [39] because in addition to annotating each input and output with
semantic types, it also explicitly represents the relationships among inputs and
outputs. Another advantage of the Karma models is that they are represented
in rdf, making it possible for clients to query and discover models using using
sparql. Other approaches use graph patterns to represent the service models,
so it is not possible to use sparql to query the models. The Karma api models
are expressive enough that it would be possible to export then to other formal
specifications such as los and msm. This is a direction for future work [47].

Karma also has a Web server where the modeled api will be deployed as a
Linked api. The Linked api implements a rest interface allowing clients to send
rdf data in a POST request. One benefit of service descriptions in Karma is that
they contain all the information needed to automatically execute apis and do
the required lowering and lifting, obviating the need to manually write separate
instructions using formalisms such as xslt and sparql. Once the Web server
receives the user POST request, it uses the service description in the Linked api
repository to lower the rdf data and build the invocation url. Then, it invokes
the Web api and again uses the service description to automatically lift the xml
or json response to generate linked data. Karma is available as an open source21
software and users can use it to model the apis based on their own needs.

6.2 sweet

To facilitate the easier adoption of semantic description of Web apis by supporting
users in their creation, KMi has developed sweet: Semantic Web sErvices Editing
Tool 22.

sweet is developed as a Web application, that can be launched in a common
Web browser and does not require any installation or additional configuration.
It provides key functionalities for modifying the html Web api descriptions
in order to include markup that identifies the different parts of the api, such
as operations, inputs and outputs, and also supports the adding of semantic
annotations by linking the different service parts to semantic entities. As a result,
sweet enables the creation of complete semantic Web api descriptions, based on
the previously introduced models, given only the existing html documentation.
More importantly, the tool hides formalism and annotation complexities from
the user by simply visualizing and highlighting the parts of the api that are
already annotated and produces an html description that is visually equivalent

17 http://isi.edu/integration/karma/ontologies/model/current#
18 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL
19 http://purl.org/hrests/current#
20 http://www.w3.org/Submission/WSMO-Lite
21 https://github.com/InformationIntegrationGroup/Web-Karma-Public
22 http://sweet.kmi.open.ac.uk

http://isi.edu/integration/karma/ontologies/model/current#
http://www.w3.org/Submission/SWRL
http://purl.org/hrests/current#
http://www.w3.org/Submission/WSMO-Lite
https://github.com/InformationIntegrationGroup/Web-Karma-Public
http://sweet.kmi.open.ac.uk


16 Ruben Verborgh et al.

to the original one but is enhanced with metadata that captures the syntactical
and semantic details of the apis. The resulting html description also serves as
the basis for extracting an rdf-based semantic Web api description, which can
be published and shared in a service repository, such as iServe, enabling service
browsing and search.

sweet 23 is a Web application developed using JavaScript and Extgwt 24,
which is started in a Web browser by calling the host url. It is part of a
fully-fledged framework, developed within the scope of the soaall European
project 25, for supporting the lifecycle of services, particularly targeted at enabling
the creation of semantic Web api descriptions. sweet takes as input an html
Web page documenting a Web api and offers functionalities for annotating service
properties and for associating semantic information with them. A current version
of the tool can be found online26.

sweet is designed as a classical three-layered Web application. The architec-
ture of sweet consists of three main components, including the visualization
component, the data preprocessing component and the annotations recommender.
The visualization component is based on a model-view-controller architecture
design pattern, where the model implements an internal representation of the
annotated Web api, in accordance with the elements foreseen by the semantic
formalisms detailed in the previous sections. In this way, every time the user
adds a new annotation via the interface, the model representation of the Web
api description is automatically updated. Similarly, when parts of the model
representation are altered or deleted, the highlighting and visualization in the
user interface is also adjusted. When the annotation process is complete, the re-
sulting html and rdf Web api descriptions are generated based on the produced
internal model.

The gui of the visualization component is shown in Figure 3 and it has
three main panels. The html of the Web api is loaded in the Navigator panel,
which implements a reverse proxy that enables the communication between the
annotation functions and the html by rerouting all sources and connections from
the original html through the Web application. Based on this, the html dom
of the restful service can freely be manipulated by using functionalities of the
Annotation Editor panel. The current status of the annotation is visualized in the
form of a tree structure in the Semantic Description panel, which is implemented
by automatically synchronizing the visualization of the service annotation with
an internal model representation, every time the user manipulates it.

In addition to these three main panels, sweet offers a number of supplemen-
tary useful functionalities. It guides the user thorough the process of marking
service properties with hrests tags, by limiting the available tags depending
on the current state of the annotation. This implements measures for reducing
possible mistakes during the creation of annotations. In addition, based on the

23 http://sweet.kmi.open.ac.uk
24 http://extjs.com/products/gxt/
25 soaalleu project fp7 - 215219, http://soa4all.eu/
26 http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html

http://sweet.kmi.open.ac.uk
http://soa4all.eu/
http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html


Semantic Description of rest apis 17

Fig. 3. sweet: Inserting hrests Tags

hrests tagged html, which provides the structure of the Web api, the user
can link service properties to semantic content. This is done by selecting service
properties, searching for suitable domain ontologies by accessing Watson [8] in
an integrated way, and by browsing ontology information. Based on this details
the user can decide to associate a service property with particular semantic
information by inserting a sawsdl model reference tag.

In summary, sweet takes as input the html Website description of the Web
api, which is loaded in the central panel, and returns a semantically annotated
version of the html or a rdf semantic description. In order to do this the user
needs to complete the following four mains steps:

1. Identify service properties (service, operation, address, http method, input,
output and label) by inserting hrests tags in the html service description.

2. Search for domain ontologies suitable for annotating the service properties.
3. Annotate service properties with semantic information.
4. Save or export the annotated Web api.

The first step can easily be completed by simply selecting the part of the html,
which describes a particular service property, and clicking on the corresponding
tag in the inset hTags pane. In the beginning, only the Service node of the hrests
tree is enabled. After the user marks the body of the service, additional tags,
such as the Operation and Method, are enabled. In this way, the user is guided
though the process of structuring the restful service description and is prevented
from making annotation mistakes. After the user structures the html description
and identifies all service properties, the adding of semantic information can
begin. The new version of sweet, just like the bookmarklet, supports users in
searching for suitable domain ontologies by providing an integrated search with
Watson [8]. The search is done by selecting a service property and sending it as



18 Ruben Verborgh et al.

a search request to Watson. The result is a set of ontology entities, matching
the service property search. Once the user has decided, which ontology to use
for the service property annotation, he/she can do an annotation by selecting
a part of the service html description and clicking on Semantic Annotation in
the Service Properties context menu. This results in inserting a model attribute
and a reference pointing to the uri, of the linked semantic concept.

The resulting descriptions can be directly posted to iServe [38] or can be
reposted on the Web. The use of the microformat tags enables the automated
search and crawling for apis, since it serves as a basis for distinguishing simple
html websites from Web api descriptions. Furthermore, when posted to iServe,
the Web api descriptions can be browsed and searched alongside with wsdl-based
services. Since the semantic Web api descriptions use sawsdl-like annotations
in combination with the wsmo-Lite service ontology, both wsdl-based services
and apis can be retrieved by using the same queries. For example, a search query
for music services would return the Last.fm description as well as all other apis
or services related to music. As a result, all type of services, can be retrieved in
a unified way.

7 Open problems / future work

7.1 Cross-Origin Resource Sharing (cors)

The xmlhttprequest specification [50] defines an api that provides scripted
client functionality for transferring data between a client and a server. In today’s
common Web applications like online spreadsheets, word processors, presentation
tools etc.—and even more in so-called mash-up applications27—the majority of
data transfers between server and client happen based on xmlhttprequest. An
important security aspect of xmlhttprequest, however, is the so-called Same
Origin Policy (sop). This policy permits scripts running on pages originating
from the same site to access each other’s methods and properties with no specific
restrictions, however, prevents access to most methods and properties across
pages on different sites. While providing at least some protection from rogue Web
pages accessing private data, sop also has severe implications for cases where
cross-origin data transfers are actually legit. Past attempts to legally circumvent
sop include using proxy servers, Adobe Flash, and json-p,28 however, more
recently, the tendency goes in the direction of properly handling cross-origin
resource sharing (cors) through a mechanism documented in a wc Working
Draft [49]. The cors standard works by adding new http headers that allow
servers to serve resources to permitted origin domains. Browsers support these
headers and enforce the restrictions they establish. While not all apis support

27 Web applications that combine data from multiple sources to create new services,
many of them listed in [10].

28 First documented appearance of json-p in Bob Ippolito’s December 2005 blog post:
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/.

http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/


Semantic Description of rest apis 19

cors yet, there is a remarkable momentum of Web api and data providers in
general to open up their data and becoming cors-enabled29.

7.2 Authentication

The ieee defines30 authentication as the act of confirming the truth of an attribute
of a datum or entity. This might involve confirming the identity of a person
[. . . ], or assuring that a computer program is a trusted one. In the world of apis,
simple authentication paradigms include (but are not limited to) api keys (codes
passed in by computer programs calling an api to identify the calling program,
its developer, or its user to the api provider), http Basic authentication, http
headers, or http cookies. In recent times, different versions of the authorization
protocol oauth31 gain traction as the de facto default standard for authorization.
Authentication is the mechanism whereby systems may securely identify their
users. Authorization, by contrast, is the mechanism by which a system determines
what level of access a particular authenticated user should have to secured
resources controlled by the system32. In the case of oauth, if the user grants access
to a resource, the application can retrieve the unique identifier for establishing
the identity in turn by using the particular api calls, and thus effectively enabling
pseudo-authentication using oauth.

[32] provides as extensive overview of currently used authentication ap-
proacher, the required credentials, ways of transmitting the credentials and
used authentication mechanisms. The provided solution is based on defining
authentication extensions to the msm defined in Section 2.

7.3 cors and authentication in api descriptions

To the best of our knowledge, neither authentication nor cors are covered by
the before-mentioned api description formats, the honorable exception being
the Web Application Description Language (wadl, [18]), where (authentication)
http headers can be described for api query parameters. While the implementa-
tion status of cors can be determined at runtime by examining a sample api
request and checking for the existence of the particular http header, there is no
general way to discover the authentication requirements of an api at runtime. In
consequence, both cors and authentication and ways to semantically describe
them remain a field for future research.

8 Conclusion

We have surveyed the current state-of-the-art in descriptions of Web APIs and
classified the various approaches. The main strength of RESTful APIS, the
29 http://enable-cors.org/
30 http://technav.ieee.org/tag/2585/authentication
31 http://oauth.net/
32 http://www.duke.edu/~rob/kerberos/authvauth.html

http://enable-cors.org/
http://technav.ieee.org/tag/2585/authentication
http://oauth.net/
http://www.duke.edu/~rob/kerberos/authvauth.html


20 Ruben Verborgh et al.

flexibility which with the APIs can be designed and deployed, at the same time
burdens client application developers with the manual work of understanding,
interpreting, and reconciling the various approaches to API design. Almost all
of today’s Web APIs come with a textual description, lacking coherence. A
little structure in architecting and documenting the APIs could greatly benefit
application developers and reduce the amount of manual effort required when
integrating multiple APIs.

Acknowledgments. R. Verborgh and R. Van de Walle are funded by Ghent Univer-
sity, the Interdisciplinary Institute for Broadband Technology (iMinds), the Institute
for the Promotion of Innovation by Science and Technology in Flanders (iwt), the
Fund for Scientific Research Flanders (fwo Flanders), and the European Union. A.
Harth and S. Speiser acknowledge the support of the European Commission’s Seventh
Framework Programme FP7/2007-2013 (PlanetData, Grant 257641). S. Stadtmüller
has been supported by a Software Campus grant.

References

1. Adida, B., Birbeck, M., McCarron, S., Herman, I.: rdfa core 1.1. wc Recommen-
dation (Jun 2012), http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

2. Baker, T., Noy, N., Swick, R., Herman, I.: Semantic Web case studies and use cases
(2007–2012), http://www.w3.org/2001/sw/sweo/public/UseCases/

3. Berners-Lee, T.: Read-write linked data (Aug 2009), http://www.w3.org/
DesignIssues/ReadWriteLinkedData.html

4. Berners-Lee, T., Connolly, D.: Notation3 (n): A readable rdf syntax. wc Team
Submission (Mar 2011), http://www.w3.org/TeamSubmission/n3/

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34–43 (2001)

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International
Journal On Semantic Web and Information Systems 5(3), 1–22 (2009)

7. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-
tion Language (wsdl) 1.1. wc Note (Mar 2001), http://www.w3.org/TR/wsdl

8. d’Aquin, M., Sabou, M., Motta, E., Angeletou, S., Gridinoc, L., Lopez, V., Zablith,
F.: What can be done with the Semantic Web? an overview of Watson-based
applications. In: 5th Workshop on Semantic Web Applications and Perspectives
(2008)

9. Devis Bianchini, Valeria Antonellis, M.M.: Flexible semantic-based service match-
making and discovery. In: Proceedings international conference on World Wide
Web. vol. 11, pp. 227–251 (2008)

10. DuVander, A.: 7,000 apis: Twice as many as this time last year. ProgrammableWeb
(Aug 2012), http://blog.programmableweb.com/2012/08/23/7000-apis-twice-
as-many-as-this-time-last-year/

11. Farrell, J., Lausen, H.: Semantic Annotations for wsdl and xml Schema
(sawsdl). wc recommendation (Aug 2007), http://www.w3.org/TR/2007/REC-
sawsdl-20070828/

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/wsdl
http://blog.programmableweb.com/2012/08/23/7000-apis-twice-as-many-as-this-time-last-year/
http://blog.programmableweb.com/2012/08/23/7000-apis-twice-as-many-as-this-time-last-year/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/


Semantic Description of rest apis 21

12. Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – http/1.1. ietf Request for Comments
(Jun 1999), http://www.ietf.org/rfc/rfc2616

13. Fielding, R.T.: rest apis must be hypertext-driven. Untangled – Musings of Roy
T. Fielding (Oct 2008), http://roy.gbiv.com/untangled/2008/rest-apis-must-
be-hypertext-driven

14. Fischer, F.F., Norton, B.: D3.4.6 Microwsmo v2 – defining the second version of
Microwsmo as a systematic approach for rich tagging. Soa4all project deliverable
(2010)

15. Gessler, D., Schiltz, G., May, G., Avraham, S., Town, C., Grant, D., Nelson, R.:
sswap: A simple semantic Web architecture and protocol for semantic Web services.
bmc Bioinformatics 10, 309 (2009)

16. Goel, A., Knoblock, C.A., Lerman, K.: Exploiting Structure within Data for Ac-
curate Labeling Using Conditional Random Fields. In: Proceedings of the 14th
International Conference on Artificial Intelligence (icai) (2012)

17. Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., Orchard, D.: uri template.
ietf Request for Comments (Mar 2012), http://tools.ietf.org/html/rfc6570

18. Hadley, M.: Web Application Description Language. wc Member Submission (Aug
2009), http://www.w3.org/Submission/wadl/

19. Khare, R., Celik, T.: Microformats: a pragmatic path to the semantic web (poster).
In: Proceedings of the 15th international conference on World Wide Web (2006)

20. Klyne, G., Carrol, J.J.: Resource Description Framework (rdf): Concepts and
Abstract Syntax. wc Recommendation (Feb 2004), http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

21. Knoblock, C., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea, M.,
Taheriyan, M., Mallick, P.: Semi-Automatically Mapping Structured Sources into
the Semantic Web. In: Proceedings of the 9th Extended Semantic Web Conference
(eswc) (2012)

22. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
23. Kopecký, J., Vitvar, T.: Microwsmo. cms Working Draft (Feb 2008), http://www.

wsmo.org/TR/d38/v0.1/20080219/
24. Kopecký, J., Gomadam, K., Vitvar, T.: hrests: an htmlMicroformat for Describing

restfulWeb Services. In Proceedings of the 2008 ieee/wic/acm International
Conference on Web Intelligence (WI-08) (2008)

25. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services. In: fis
(2010)

26. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In: Proceedings of the 18th
International Conference on Machine Learning. pp. 282–289 (2001)

27. Lanthaler, M., Gütl, C.: A semantic description language for restful data services
to combat semaphobia. In: Proceedings of the 5th ieee International Conference
on Digital Ecosystems and Technologies Conference. pp. 47–53 (Jun 2011), http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5936597

28. Lanthaler, M., Gütl, C.: On using json-ld to create evolvable restful services. In:
Proceedings of the Third International Workshop on restful Design. pp. 25–32.
acm, New York, ny, usa (2012), http://doi.acm.org/10.1145/2307819.2307827

29. Lanthaler, M., Gütl, C.: Seamless integration of restful services into the Web of
Data. Advances in Multimedia 2012, 1:1–1:14 (Jan 2012), http://dx.doi.org/10.
1155/2012/586542

30. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (wsmo). wc
Member Submission (Jun 2005), http://www.w3.org/Submission/WSMO/

http://www.ietf.org/rfc/rfc2616
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc6570
http://www.w3.org/Submission/wadl/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.wsmo.org/TR/d38/v0.1/20080219/
http://www.wsmo.org/TR/d38/v0.1/20080219/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5936597
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5936597
http://doi.acm.org/10.1145/2307819.2307827
http://dx.doi.org/10.1155/2012/586542
http://dx.doi.org/10.1155/2012/586542
http://www.w3.org/Submission/WSMO/


22 Ruben Verborgh et al.

31. Li, N., Pedrinaci, C., Maleshkova, M., Kopecký, J., Domingue, J.: Omnivoke: A
framework for automating the invocation of Web apis. In: Proceedings of Fifth
ieee International Conference on Semantic Computing. pp. 380–387 (2011)

32. Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, I.: Using
semantics for automating the authentication of Web apis. International Semantic
Web Conference (iswc) (2010), shanghai, China

33. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating Web apis on the World
Wide Web. In: The 8th ieee European Conference on Web Services (2010), http:
//oro.open.ac.uk/24320/

34. Martin, D., Burstein, M., Hobbs, J., Lassila, O.: owl-s: Semantic Markup for Web
Services. wc Member Submission (Nov 2004), http://www.w3.org/Submission/
OWL-S/

35. McGuinness, D.L., van Harmelen, F.: owl web ontology language. wc Recom-
mendation (Feb 2004), http://www.w3.org/TR/owl-features/

36. Norton, B., Stadtmüller, S.: Scalable discovery of linked services. In: red (2011)
37. Pedrinaci, C., Domingue, J.: Toward the next wave of services: Linked services for

the web of data. Journal of Universal Computer Science pp. 1694–1719 (2010)
38. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecký, J., Domingue, J.:

iserve: a linked services publishing platform. Workshop: Ontology Repositories and
Editors for the Semantic Web at 7th Extended Semantic Web Conference (2010)

39. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services
for the Web of Data. Journal of Universal Computer Science 16(13) (2010)

40. Severance, C.: Discovering JavaScript Object Notation. Computer 45(4), 6–8 (Apr
2012), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178118

41. Sheth, A., Verma, K., Gomadam, K.: Semantics to energize the full services spectrum.
Comm. acm 49, 55–61 (2006)

42. Sheth, A.P., Gomadam, K., Lathem, J.: sa-rest: Semantically interoperable and
easier-to-use services and mashups. ieee Internet Computing 11(6):91-94 (2007)

43. Soto, C.A.: 5 technologies that will change the market (Aug 2010), http:
//washingtontechnology.com/articles/2010/08/02/cover-5-disruptive-
technologies.aspx

44. Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data
Services. In: The Semantic Web: Research and Applications, Lecture Notes in
Computer Science, vol. 6643, pp. 170–184. Springer (2011)

45. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Birbeck, M.: json-ld syntax
1.0. wc Editor’s Draft (Oct 2012), http://json-ld.org/spec/latest/json-ld-
syntax/

46. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly Integrating
Services into the Linked Data Cloud. In: Proceedings of the 11th International
Semantic Web Conference (iswc). Boston, usa (2012)

47. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Semi-Automatically
Modeling Web apis to Create Linked apis. In: Proceedings of the Linked apis for
the Semantic Web Workshop (lapis). Heraklion, Crete, Greece (2012)

48. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building Mashups by Demonstration.
acm Transactions on the Web (tweb) 5(3) (2011)

49. van Kesteren, A.: Cross-Origin Resource Sharing. wc Working Draft (Apr 2012),
http://www.w3.org/TR/cors/

50. van Kesteren, A.: xmlhttprequest Level 2. wc Working Draft (Jan 2012), http:
//www.w3.org/TR/XMLHttpRequest/

http://oro.open.ac.uk/24320/
http://oro.open.ac.uk/24320/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/owl-features/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178118
http://washingtontechnology.com/articles/2010/08/02/cover-5-disruptive-technologies.aspx
http://washingtontechnology.com/articles/2010/08/02/cover-5-disruptive-technologies.aspx
http://washingtontechnology.com/articles/2010/08/02/cover-5-disruptive-technologies.aspx
http://json-ld.org/spec/latest/json-ld-syntax/
http://json-ld.org/spec/latest/json-ld-syntax/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/


Semantic Description of rest apis 23

51. Verborgh, R., Haerinck, V., Steiner, T., Van Deursen, D., Van Hoecke, S., De Roo,
J., Van de Walle, R., Gabarró Vallés, J.: Functional composition of sensor Web apis.
In: Proceedings of the 5th International Workshop on Semantic Sensor Networks
(Nov 2012)

52. Verborgh, R., Steiner, T., Gabarró Vallés, J., Mannens, E., Van de Walle, R.: A
social description revolution—describing Web apis’ social parameters with restdesc.
In: Proceedings of the AAAI 2012 Spring Symposia (Mar 2012), http://www.aaai.
org/ocs/index.php/SSS/SSS12/paper/viewFile/4283/4665

53. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Gabarró Vallés, J., Van de
Walle, R.: Functional descriptions as the bridge between hypermedia apis and the
Semantic Web. In: Proceedings of the Third International Workshop on restful
Design. acm (Apr 2012)

54. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R.,
Gabarró Vallés, J.: Capturing the functionality of Web services with functional de-
scriptions. Multimedia Tools and Applications (2013), http://www.springerlink.
com/index/d041t268487gx850.pdf

55. Webber, J.: rest in Practice: Hypermedia and Systems Architecture. O’Reilly
(2010)

56. Wilde, E.: rest and rdf granularity (May 2009), http://dret.typepad.com/
dretblog/2009/05/rest-and-rdf-granularity.html

57. Wilkinson, M.D., Links, M.: Biomoby: An open source biological web services
proposal. Briefings in Bioinformatics 3, 331–341 (2002)

58. wc WS Description Working Group: Web service description language (wsdl)
Version 2.0, wc proposed recommendation (May 2007), http://www.w3.org/TR/
wsdl20-primer

59. Wu, B., Szekely, P., Knoblock, C.A.: Learning Data Transformation Rules through
Examples: Preliminary Results. In: 9th International Workshop on Information
Integration on the Web (IIWeb) (2012)

60. Zyp, K.: A json media type for describing the structure and meaning of json
documents. ietf Request for Comments (Nov 2010), http://tools.ietf.org/
html/draft-zyp-json-schema-03

http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/viewFile/4283/4665
http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/viewFile/4283/4665
http://www.springerlink.com/index/d041t268487gx850.pdf
http://www.springerlink.com/index/d041t268487gx850.pdf
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03

	Semantic Description of restapis

