
The Missing Links
How the Description Format restdesc Applies

the Linked Data Vision to Connect Hypermedia apis

Ruben Verborgh1, Thomas Steiner2, Rik Van de Walle1, and Joaquim Gabarro2

1 Ghent University – ibbt, elis – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

{ruben.verborgh,rik.vandewalle}@ugent.be
2 Universitat Politècnica de Catalunya – Department lsi

08034 Barcelona, Spain
{tsteiner,gabarro}@lsi.upc.edu

Abstract. “Web 1.0 connected humans with machines. Web 2.0 con-
nected humans with humans. Web 3.0 connects machines with machines.”1

On the one hand, an incredible amount of valuable data is described by
billions of triples, machine-accessible and interconnected thanks to the
promises of Linked Data. On the other hand, rest is a scalable, resource-
oriented architectural style that, like the Linked Data vision, recognizes
the importance of links between resources. Hypermedia apis are re-
sources, too—albeit dynamic ones—and unfortunately, neither Linked
Data principles, nor the rest-implied self-descriptiveness of hypermedia
apis sufficiently describe them to allow for long-envisioned realizations
like automatic service discovery and composition. We argue that describ-
ing inter-resource links—similarly to what the Linked Data movement
has done for data—is the key to machine-driven consumption of apis.
In this paper, we explain how the description format restdesc captures
the functionality of apis by explaining the effect of dynamic interactions,
effectively complementing the Linked Data vision.

1 The Linked Data Story is Only Half of the Story

Let us take a step back and think about the Web in its most abstract form.
What we see are resources, with an unparalleled variety, and an ever increasing
number of links between them [7]. Resources and their representations make up
the essence of the Web [11], while the Linked Data vision made us all realize
again the crucial role links play therein. Indeed, links have been the catalysts of
the success of the human Web, and they continue to prove their strengths on the
Semantic Web [5]. The representations of resources—and therefore data—are
given meaning by links, corresponding to well-defined rdf predicates.

1 As mentioned on Twitter by Inge Henriksen: https://twitter.com/ihenriksen/
status/174510781352783872

https://twitter.com/ihenriksen/status/174510781352783872
https://twitter.com/ihenriksen/status/174510781352783872


2 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

Book Store Book 443 Review 7
hasBook hasReview

Static actions (e.g., following links)
The Linked Data principles tell agents
what happens if they GET /books/443.
They indeed receive a representation of the
resource identified by that URI, in this case a book. 
This process, called “dereferencing”, is driven by the
typed links (hasBook, hasReview) between resources.

Dynamic actions (e.g., submitting forms)
However, while humans might predict what happens
when they POST to /books/443, machines cannot.
Therefore, the goal of RESTdesc is to explain the
effect of a state-changing operation on a resource,

in this case creating a new review for the book.
This process is also driven by the same typed links.

Fig. 1. restdesc complements Linked Data by explaining a hyperlink’s dynamic
functionality in machine-readable form. For instance, we can express with restdesc
what happens when agents use POST on a linked resource instead of GET.

If links are so important, why don’t we see them on the service-side of the Web
yet? When Fielding redesigned the http [10] specification, he had a resource-
oriented model in mind where hypermedia drives Web applications: Represen-
tational State Transfer (rest, [11]). As he later clarified, the hypermedia con-
straint imposed by rest tells us that representations of a resource should con-
tain the controls (e.g., links and forms) to possible next steps or resources [9].
Consequently, modeling Web services or apis the rest way leads to the same
resources-and-links paradigm at the core of the human and the Semantic Web.

In all fairness, rest apis—as defined by Fielding—are scarce. Hypermedia-
driven apis are vastly outnumbered by plain http and rpc interfaces. However,
this can in fact be compared to unstructured and unlinked data being currently
more present on the Web than Linked Data. Therefore, the scarceness doesn’t
change the status of resource- and link-orientedness as well-suited model for
automated agents to perform static and dynamic interactions on the Web.

Currently missing is a way for agents to know what effect a state-changing
operation will have. Linked Data gives the answer for information-retrieving
operations, known as dereferencing. Performing a GET operation on a resource’s
uri will provide the agent with information about that resource. But what
happens when the agent performs a POST operation on the same resource?
Since Fielding suggests the controls (e.g., links and forms) should point to
possible next steps or resources, it is obvious how the state change happens.
However, what this state change will bring might be obvious to humans, but
is still unknown to machines. Therefore, in this paper, we zoom in on how the
description format restdesc [21] explains to agents what will happen if state-
changing operations are performed on a resource, complementary to the Linked
Data principles that explain the same for static operations. This complementary
nature is illustrated in Fig. 1, which positions Linked Data and restdesc.

This paper starts by describing the differences and similarities of Linked Data
and hypermedia apis in the next section, zooming in on the gaps that need to
be bridged. Section 3 illustrates the role restdesc can play herein by formally
expressing the relationship between resources in a hypermedia api. We compare
restdesc with other approaches in Section 4. Finally, Section 5 looks back on
the discussed topics and ends by indicating the importance of hypermedia-driven
apis on the Web for autonomous agents.



How restdesc Applies the Linked Data Vision to Connect Hypermedia apis 3

2 A Joint Future for Linked Data and Hypermedia apis

We start this section with an essential definition to avoid misunderstandings on
the thin ice of rest, restlike, and unrestful apis:

Hypermedia Web apis are interfaces to manipulate resources according to
the http method semantics, serving representations of these resources along
with the controls to advance through the interface [9].2

Striking parallels between Linked Data and hypermedia apis exist—and this
is not a coincidence, since both are closely tied to the original visions and ar-
chitecture of the Web. One of the common elements are resources: concepts
in Linked Data are identified by one or multiple uris, which, when requested
through http GET, lead to information about that concept. Hypermedia apis
are similarly structured as concepts or resources, with the constraints that ev-
ery uri should identify a resource and that the http methods should be used
conform to the http specification [10]. The semantics of the GET method have
therein been defined as “obtaining the information identified by the uri”, which,
unsurprisingly, matches the Linked Data purpose.

The other common element are links: as the name implies, they play a vital
role in Linked Data, and they are at the heart of the Semantic Web. Links are
what gives a concept’s data meaning beyond its own context. More concretely, if
an agent does not understand what a data property means, it can look up that
property because its link is an http uri. The same applies to hypermedia apis:
the controls, telling us how other resources relate to the current resource, can
be links. Details on the nature of the relation are conveyed by link types, which
can have the same uris as Linked Data properties [17].

In essence, one could see the whole Linking Open Data Cloud [6] as a large,
distributed hypermedia application. This is in fact how its usage is encouraged:
an agent starts from one resource and can make its way through the whole cloud,
just by “following its nose”, thanks to the links. However, it only provides a subset
of the possibilities of what we expect from a hypermedia api: merely retrieval
operations are supported. Yet, the role of links here remains important: browsing
billions of triples in billions of resources would otherwise prove difficult.

An interesting aspect of rest is that it does not matter whether the resources
and triples already exist. They can either be part of documents, or be the result
of a service invocation—but the agent does not have to know and does not
have to care. For example, a huge dataset of natural numbers has been made
available as Linked Data [23], yet the information of each number is not static,
but instead generated dynamically when an agent dereferences its uri. This
dataset is thus what we would traditionally consider a “service”, but thanks to
the rest principles, it manifests itself as just another set of linked resources.
2 Hypermedia apis are synonymous to “rest apis or services, in the sense as defined
by Fielding” [11]. This last clarification is important, since many apis that were
given a “rest” label do not, or only partially, adhere to Fielding’s definition, which
is why we use the term “hypermedia api” to distinguish the intended meaning [13].



4 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

Nevertheless, we often associate the concept of services additionally with
action-driven behavior, for example, allowing us to post a comment or order
tickets. In a rest architectural model, these actions are captured by the modifi-
cation or creation of resources, linked to existing resources. While these and sim-
ilar actions are very common on the human Web and on the Web of services, the
Semantic Web still struggles with state-changing operations [4]. Several mecha-
nisms are there (e.g., sparql UPDATE [12]), but issues such as authorization and
security still impede wide adoption. Consequently, the Linked Data vision must
in the meantime assume that the publisher and consumer sides are distinct, i.e.,
that consumers of Linked Data will not need to perform write operations. This
simplifying assumption has its benefits—just look at the overwhelming amount of
data—but will not be sufficient for the vision of autonomous agents that require
actions in the real world. Indeed, as the comment and ticket examples indicate,
many interactions we perform daily involve write actions. Therefore, in the next
section, we will look at the requirements of agents for browsing full hypermedia
apis, which offer both information-retrieving and state-changing operations.

3 restdesc Describes Hypermedia Links

As an example, let us consider the situation of Fig. 1. Starting from the book
store’s main uri, an agent discovers resources in a fully hypermedia-driven way.
Its steps might be the following:

1. GET a representation of the index resource at /.
2. Find a hasBook link in this representation titled “The Catcher in the Rye”.
3. GET a representation of this linked resource at /books/443.
4. Find a hasReview link in this representation.
5. GET a representation of this linked resource at /books/443/reviews/7.

This way of working is hypermedia-driven, because the agent only follows the
representation-supplied controls (e.g., links) to go from one step to the next.

This approach works perfectly so far, because the agent knows in each step
what the result will look like, thanks to the Linked Data principles. Even if it
should not, it can execute the GET request without any harm, since the http
specification states the GET method is safe [10]. What the agent cannot do, how-
ever, is carelessly issue a POST request in one of the steps, since a) it cannot pre-
dict what the result will be and b) testing what the result is can have unwanted
consequences, as POST is unsafe. Furthermore, it cannot determine what body it
should send along with the POST request. Although some representation formats
provide forms (e.g., html and Atom), others lack form functionality (e.g., rdf),
but in either case, it is unclear how the result relates to the submitted data.

The restdesc description format [21] explains in a machine-processable way
what functionality is offered by a certain hypermedia link. This enables agents
to understand what data they can send along with a POST request and how this
data will influence the outcome of the request. Listing 1 displays a description
of the hasBook link type and serves as an illustration of several common aspects
of restdesc descriptions.



How restdesc Applies the Linked Data Vision to Connect Hypermedia apis 5

@prefix ex: <http://example.org/book-store#>.
@prefix http: <http://www.w3.org/2011/http#>.

{
?store ex:hasBook ?book. 1
?review ex:author _:author;

ex:rating _:rating;
ex:contents _:text.

}
=>
{
_:request http:methodName "POST"; 2

http:requestURI ?book;
http:body ?review;
http:resp [ http:body ?book ].

?book ex:hasReview ?review. 3
}.

Listing 1. restdesc describes the act of posting a review by explaining the associated
hypermedia link.

restdesc descriptions are expressed in Notation3 (n, [2]), a small superset
of rdf put forward by Tim Berners-Lee. n adds support for quantification,
necessary to create statements concerning all resources instead of only specific
ones. The description in Listing 1 consists of three parts and can be read as:

1 if you obtain a book from a hasBook hyperlink
2 then you can make a POST request to that book’s uri
3 to add a review with the supplied parameters to that book.

The logical foundations of n (nlogic, [3]) define an operational semantics,
i.e., restdesc descriptions are n rules that can be instantiated and executed
by a reasoner. Concretely, if the agent has been given the contents of a review
(author, rating, content), it can follow these hypermedia-driven steps:

1. GET the restdesc description of hasBook.3

2. GET a representation of the index resource at /.
3. Find a hasBook link in this representation titled “The Catcher in the Rye”.
4. Instantiate the description with the review and found link.
5. POST the review, as instructed by the description, at /books/443.

Note again how only hypermedia controls are used to get from one step to the
next. The added value of restdesc here is to explain the agent in advance what
effect the POST request will have, so it can decide whether to execute this request.
In real-world applications, restdesc descriptions can be used for goal-driven api
compositions [22]. For instance, the user can supply the review parameters as
input, and ask that it is submitted to a certain book.

3 restdesc discovery, i.e., how to GET restdesc descriptions, has been discussed ear-
lier [21]. The agent could for example dereference the hasBook link.



6 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

4 Related Work

Description of Web services or apis for automated use has been on the Web since
before the advent of the Semantic Web (notably wsdl [8]), and played an impor-
tant part during the beginning of the Semantic Web’s inception. Several of the
first initiatives are well-known: owl-s [16], which evolved from daml-s [1], and
the conceptually different wsmo [15,19]. These formats target what are called
“Big” Web services [18], which function in a message-passing or Remote Proce-
dure Call (rpc) paradigm. While these models use Semantic Web elements such
as ontologies, they predate the Linked Data vision and the recent revaluation of
rest apis. Neither owl-s nor wsmo have stood the test of time, as extensive
Web searches did not reveal substantial real-world usage. We therefore focus on
more recent research projects that have design goals similar to restdesc, e.g.,
a focus on functionality and/or hypermedia apis.

Linked Open Services (los, [14]) have an http api approach, in which
sparql graph patterns identify the offered functionality. Part of the project’s
scope concerns the lifting and lowering of existing services, since many of them
do not expose their data in a semantic format yet. A difference with restdesc
is that los apis are not committed to the hypermedia constraint, whereas the
hypermedia-driven consumption of apis is a central concept in restdesc.

Linked Data Services (lids, [20]) have a similar notion of input and output
graphs. They use the input data to construct a resource’s uri, as opposed to
los, which sends input data in the request body. The result is an api whose
interactions are thus in a sense solely form-based—the form structure being
defined by the unbound variables in the input graph pattern. In addition to
forms (not discussed in this paper), restdesc also aims to support the link part
of the hypermedia control set.

5 Conclusion

The Linked Data vision strives to connect data on the Web, making it available
in a machine-processable format. Hypermedia apis similarly strive for connect-
edness of resources, but also consider the write side of interactions. Their goals
are similar, and so are their tools: both make automated consumption of the Web
available using the core principles of the http architecture, featuring resources,
representations, and links. However, dealing with state-changing operations
requires automated agents to have expectations of what consequences their
actions will have.

restdesc shows how existing Semantic Web technologies can be combined to
explain the functionality of a Web api to those agents. It enables us to apply the
Linked Data vision to hypermedia apis by describing the meaning of links for
state-changing operations. In that sense, it is a plea for more hypermedia apis
on the Web, as they beautifully incorporate the controls that future autonomous
agents will need to browse the Web. Therefore, we believe it is time to transition
today’s services towards hypermedia apis by adding the missing links.



How restdesc Applies the Linked Data Vision to Connect Hypermedia apis 7

Acknowledgments The described activities were funded by Ghent University,
the Interdisciplinary Institute for Broadband Technology (ibbt), the Institute
for the Promotion of Innovation by Science and Technology in Flanders (iwt),
the Fund for Scientific Research Flanders (fwo), and the European Union.

This work was partially supported by the European Commission under Grant
No. 248296 FP7 (i-search project). Joaquim Gabarró is partially supported by
TIN-2007-66523 (formalism), and SGR 2009-2015 (alcom).

References

1. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. daml-s: Web
service description for the Semantic Web. 2342:348–363, 2002.

2. T. Berners-Lee and D. Connolly. Notation3 (n): A readable rdf syntax. wc
Team Submission, 2011. Available at http://www.w3.org/TeamSubmission/n3/.

3. T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. nlogic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming,
8(3):249–269, 2008.

4. T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey, O. Seneviratne, and
O. Ureche. Realising a read-write Web of Data, June 2009. Available at http:
//web.mit.edu/presbrey/Public/rw-wod.pdf.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, 2001.

6. C. Bizer. The emerging Web of Linked Data. Intelligent Systems, IEEE, 24(5):87–
92, Sept. 2009.

7. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – the story so far. Interna-
tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

8. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-
raveling the Web services web: an introduction to soap, wsdl, and uddi. Internet
Computing, ieee, 6(2):86–93, Mar. 2002.

9. R. T. Fielding. rest apis must be hypertext-driven. Untangled – Musings of
Roy T. Fielding, Oct. 2008. Available at http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven.

10. R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – http/.. Request for Comments:
2616, June 1999. Available at http://tools.ietf.org/html/rfc2616.

11. R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture.
ACM Transactions on Internet Technology, 2(2):115–150, May 2002.

12. P. Gearon, A. Passant, and A. Polleres. sparql . Update. wc Working Draft,
Jan. 2012. Available at http://www.w3.org/TR/sparql11-update/.

13. S. Klabnik. rest is over, Feb. 2012. Available at http://blog.steveklabnik.
com/posts/2012-02-23-rest-is-over.

14. R. Krummenacher, B. Norton, and A. Marte. Towards Linked Open Services and
Processes. In A. Berre, A. Gómez-Pérez, K. Tutschku, and D. Fensel, editors,
Future Internet – fis 2010, volume 6369 of Lecture Notes in Computer Science,
pages 68–77. Springer Berlin / Heidelberg, 2010.

15. R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of wsmo
and owl-s. In L.-J. Zhang and M. Jeckle, editors, Web Services, volume 3250 of
Lecture Notes in Computer Science, pages 254–269. Springer Berlin, 2004.

http://www.w3.org/TeamSubmission/n3/
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc2616
http://www.w3.org/TR/sparql11-update/
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over


8 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

16. D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D. L.
Mcguinness, E. Sirin, and N. Srinivasan. Bringing semantics to Web services with
owl-s. World Wide Web, 10:243–277, Sept. 2007.

17. M. Nottingham. Web Linking. Request for Comments: 5988, Oct. 2010. Available
at http://tools.ietf.org/html/rfc5988.

18. C. Pautasso, O. Zimmermann, and F. Leymann. restful Web services vs. “Big”
Web services: making the right architectural decision. In Proceedings of the 17th

international conference on World Wide Web, WWW ’08, pages 805–814, New
York, NY, USA, 2008. ACM.

19. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied
Ontology, 1:77–106, January 2005.

20. S. Speiser and A. Harth. Taking the LIDS off data silos. In Proceedings of the 6th

International Conference on Semantic Systems, I-SEMANTICS ’10, pages 44:1–
44:4, New York, NY, USA, 2010. ACM.

21. R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle, and
J. Gabarro. Capturing the functionality of Web services with functional descrip-
tions. Multimedia Tools and Applications, 2012. Available at http://rd.springer.
com/article/10.1007/s11042-012-1004-5.

22. R. Verborgh, D. Van Deursen, E. Mannens, C. Poppe, and R. Van de Walle. En-
abling context-aware multimedia annotation by a novel generic semantic problem-
solving platform. Multimedia Tools and Applications, 2012. Available at http:
//rd.springer.com/article/10.1007/s11042-010-0709-6.

23. D. Vrandečić, M. Krötzsch, S. Rudolph, and U. Lösch. Leveraging non-lexical
knowledge for the Linked Open Data Web. 5th Review of April Fool’s day Trans-
actions, pages 18–27, 2010.

http://tools.ietf.org/html/rfc5988
http://rd.springer.com/article/10.1007/s11042-012-1004-5
http://rd.springer.com/article/10.1007/s11042-012-1004-5
http://rd.springer.com/article/10.1007/s11042-010-0709-6
http://rd.springer.com/article/10.1007/s11042-010-0709-6

	The Missing Links

